

TERMS AND CONDITIONS OF SALE AND LICENSE OF TANDY COMPUTER EQUIPMENT AND SOFTWARE PURCHASED
FROM RADIO SHACK COMPANY-OWNED COMPUTER CENTERS, RETAIL STORES AND RADIO SHACK FRANCHISEES OR

DEALERS AT THEIR AUTHORIZED LOCATIONS

I. CUSTOMER OBLIGATIONS
LIMITED WARRANTY

A. CUSTOMER assumes full responsibility that this computer hardware purchased (the "Equipment"), and any copies of software included with the
Equipment or licensed separately (the "Software") meets the specifications, capacity, capabilities, versatility, and other requirements of CUSTOMER.

B. CUSTOMER assumes full responsibility for the condition and effectiveness of the operating environment in which the Equipment and Software are to
function, and for its installation.

II. LIMITED WARRANTIES AND CONDITIONS OF SALE

A. For a period of ninety (90) calendar days from the date of the Radio Shack sales document received upon purchase of the Equipment. RADIO SHACK
warrants to the original CUSTOMER that the Equipment and the medium upon which the Software is stored is free from manufacturing defects. This
warranty is only applicable to purchases of Tandy Equipment by the original customer from Radio Shack company-owned computer centers,
retail stores, and Radio Shack franchisees and dealers at their authorized locations. The warranty is void if the Equipment's case or cabinet has
been opened, or if the Equipment or Software has been subjected to improper or abnormal use. If a manufacturing defect is discovered during the
stated warranty period, the defective Equipment must be returned to a Radio Shack Computer Center, a Radio Shack retail store, a participating
Radio Shack franchisee or a participating Radio Shack dealer for repair, along with a copy of the sales document or lease agreement. The original
CUSTOMER'S sole and exclusive remedy in the event of a defect is limited to the correction of the defect by repair, replacement, or refund of the
purchase price, at RADIO SHACK'S election and sole expense. RADIO SHACK has no obligation to replace or repair expendable items.

B. RADIO SHACK makes no warranty as to the design, capability, capacity, or suitability for use of the Software, except as provided in this paragraph.
Software is licensed on an "AS IS" basis, without warranty. The original CUSTOMER'S exclusive remedy, in the event of a Software manufacturing
defect, is its repair or replacement within thirty (30) calendar days of the date of the Radio Shack sales document received upon license of the
Software. The defective Software shall be returned to a Radio Shack Computer Center, a Radio Shack retail store, a participating Radio Shack
franchisee or Radio Shack dealer along with the sales document.

C. Except as provided herein no employee, agent, franchisee, dealer or other person is authorized to give any warranties of any nature on behalf of
RADIO SHACK.

D. EXCEPT AS PROVIDED HEREIN, RADIO SHACK MAKES NO EXPRESS WARRANTIES, AND ANY IMPLIED WARRANTY OF MERCHANTABILITY OR
FITNESS FOR A PARTICULAR PURPOSE IS LIMITED IN ITS DURATION TO THE DURATION OF THE WRITTEN LIMITED WARRANTIES SET FORTH
HEREIN.

E. Some states do not allow limitations on how long an implied warranty lasts, so the above limitation(s) may not apply to CUSTOMER.

Ill. LIMITATION OF LIABILITY

A. EXCEPT AS PROVIDED HEREIN, RADIO SHACK SHALL HAVE NO LIABILITY OR RESPONSIBILITY TO CUSTOMER OR ANY OTHER PERSON OR
ENTITY WITH RESPECT TO ANY LIABILITY, LOSS OR DAMAGE CAUSED OR ALLEGED TO BE CAUSED DIRECTLY OR INDIRECTLY BY
"EQUIPMENT" OR "SOFTWARE" SOLD, LEASED, LICENSED OR FURNISHED BY RADIO SHACK, INCLUDING, BUT NOT LIMITED TO, ANY
INTERRUPTION OF SERVICE, LOSS OF BUSINESS OR ANTICIPATORY PROFITS OR CONSEQUENTIAL DAMAGES RESULTING FROM THE USE OR
OPERATION OF THE "EQUIPMENT" OR "SOFTWARE." IN NO EVENT SHALL RADIO SHACK BE LIABLE FOR LOSS OF PROFITS, OR ANY
INDIRECT, SPECIAL, OR CONSEQUENTIAL DAMAGES ARISING OUT OF ANY BREACH OF THIS WARRANTY OR IN ANY MANNER ARISING OUT OF
OR CONNECTED WITH THE SALE, LEASE, LICENSE, USE OR ANTICIPATED USE OF THE "EQUIPMENT" OR "SOFTWARE."
NOTWITHSTANDING THE ABOVE LIMITATIONS AND WARRANTIES, RADIO SHACK'S LIABILITY HEREUNDER FOR DAMAGES INCURRED BY
CUSTOMER OR OTHERS SHALL NOT EXCEED THE AMOUNT PAID BY CUSTOMER FOR THE PARTICULAR "EQUIPMENT" OR "SOFTWARE"
INVOLVED.

B. RADIO SHACK shall not be liable for any damages caused by delay in delivering or furnishing Equipment and/or Software.
C. No action arising out of any claimed breach of this Warranty or transactions under this Warranty may be brought more than two (2) years after the

cause of action has accrued or more than four (4) years after the date of the Radio Shack sales document for the Equipment or Software, whichever
first occurs.

D. Some states do not allow the limitation or exclusion of incidental or consequential damages, so the above limitation(s) or exclusion(s) may not apply
to CUSTOMER.

IV. SOFTWARE LICENSE

RADIO SHACK grants to CUSTOMER a non-exclusive, paid-up license to use the TANDY Software on one computer, subject to the following provisions:
A. Except as otherwise provided in this Software license, applicable copyright laws shall apply to the Software.
B. Title to the medium on which the Software is recorded (cassette and/or diskette) or stored (ROM) is transferred to CUSTOMER, but not title to the

Software.
C. CUSTOMER may use Software on one host computer and access that Software through one or more terminals if the Software permits this function.
D. CUSTOMER shall not use, make, manufacture, or reproduce copies of Software except for use on one computer and as is specifically provided in

this Software License. Customer is expressly prohibited from disassembling the Software.
E. CUSTOMER is permitted to make additional copies of the Software only for backup or archival purposes or if additional copies are required in the

operation of one computer with the Software, but only to the extent the Software allows a backup copy to be made. However, for TRSDOS Software,
CUSTOMER is permitted to make a limited number of additional copies for CUSTOMER'S own use.

F. CUSTOMER may resell or distribute unmodified copies of the Software provided CUSTOMER has purchased one copy of the Software for each one
sold or distributed. The provisions of this Software License shall also be applicable to third parties receiving copies of the Software from
CUSTOMER.

G. All copyright notices shall be retained on all copies of the Software.

V. APPLICABILITY OF WARRANTY

A. The terms and conditions of this Warranty are applicable as between RADIO SHACK and CUSTOMER to either a sale of the Equipment and/or
Software License to CUSTOMER or to a transaction whereby Radio Shack sells or conveys such Equipment to a third party for lease to CUSTOMER.

B. The limitations of liability and Warranty provisions herein shall inure to the benefit of RADIO SHACK, the author, owner and or licensor of the
Software and any manufacturer of the Equipment sold by Radio Shack.

VI. STATE LAW RIGHTS

The warranties granted herein give the original CUSTOMER specific legal rights, and the original CUSTOMER may have other rights which vary from
state to state.

12/84

Radio Shack Super LOGO

By

Larry l{heriaty

and George Gerhold

First Edition

Super LOGO program:

©1984 Micropi

All Rights Reserved.

Licensed to Tandy Corporation.

Super LOGO manual:

©1984 Micropi

All Rights Reserved.

Licensed to Tandy Corporation.

Reproduction or use, without express written permission from

Micro pi and Tandy Corporation, of any portion of this man

ual is prohibited. While reasonable efforts have been taken in

the preparation of this manual to assure its accuracy, M icropi

and Tandy Corporation assume no liability resulting from any

errors or omissions in this manual, or from the use of the infor

mation obtained herein.

Please refer to the Software License in the front of this manual

for limitations on the use and reproduction of this Software

package

FOREWO RD

For more than a decade, the authors have been involved in the use of computers in education,

and particularly with Computer-Assisted Instruction. Our experience made us aware of prob

lems in getting students started on the right track in programming, and of LOGO's potential
to help solve those problems. We decided that it would be worthwhile to develop a version of

LOGO which ran on low-cost hardware and allowed relatively long sets of procedures. Color

LOGO met those objectives and allowed the addition of some features, notably multiple turtles.
Now more memory is available at low cost, and we have the benefit of feedback from many

users. Super LOGO makes use of both those developments; larger ROM packs made addition
of list processing and decimal arithmetic practical, and the feedback showed us many small

improvements which make the package more useful.

Our debt to the original designers of the LOGO language is acknowledged in Chapter 1. We

would also like to thank our children Aaron, Jenell, and Kirstin, whose responses to early ver
sions of Color LOGO convinced us that we were on the right track.

George Gerhold

Larry Kheriaty

Table of Contents
Introduction ... 1

1. A Bit About Color WGO ... 3

2. Getting Started . 5

:3. �J>eat .. 11

4. Modes and Editing .. 15

5. Procedures .. 19

6. Subprocedures .. 23

'7. v�ri�bles .. 29

8. Ce>l<>rs .. 33

9. Other Turtle Ce>m.m.ands .. 3'7

10. Saving, Loading, and Printing Procedures .. 41

11. &cursion... 45

12. DOODLE Mode-Procedures Without Typing 55

13. One Key Doodling... 59

14. Use of DOODLE Mode and OK Set .. 63

15. Additional Editing Features .. '75

16. Multiple Turtles .. 7'7

17. New Shapes for Turtles .. 87

18. Turtle Gam.es 97

19. W<>rd and Ii.st Operations .. 107

20. Communication Between Procedures .. 111

21. Interactive Procedures .. 117

22. Playing with Words and Sentences 123

23. Generating and Sorting lists... 129

24. Card Garn.es 135

2!>. Word Garn.es .. 145

26. Dice Garn.es 149

�7. Grab Bag lfi3

Appendix: I..a.nguage Suin.In.ary .. 161

I11de" ... 1��

INTRODUCTION

Radio Shack Super LOGO is an educational computer language. The language can be used to

draw pictures on the computer's video display, using a shape on the screen called a "turtle; '
and it can be used to manipulate lists of words.

The graphics portion of Super LOGO is designed to let children learn by exploring. Children

plan an action, then enter simple commands that move the turtle forward or back, or turn it

in any direction. Here are a few of the special features of Super LOGO:

• Line- oriented editing allows you to write and save sequences of turtle moves (called

"procedures").

• A "doodle mode" lets children who are too young to read or type use the program.

• A " SLOW" command lets you control how fast the turtle moves.

• Screen colors can be changed.

• Animation is possible with Super LOGO.

• Variables and arithmetic expressions can be used in the sets of turtle moves that you write

and save.

• Multiple turtles can work in concert on graphics and on list-processing tasks.

Super LOGO is a language for beginners. For this reason, the Super LOGO manual has been

written to guide you through use of the language, step by step, with many examples and illus

trations. Here is a summary of the organization of the manual :

1 . Chapters 1 through 11 introduce turtle graphics, the LOGO syntax, and use of the editor.
Readers who are already familiar with LOGO may wish to skim these chapters or to

bypass them in favor of the summary in Appendix I .

2. Chapters 12 through 18 cover features unique to Super LOGO.

a. Chapters 12 through 14 provide hints for using Super LOGO with very young children.

b. Chapter 15 provides more information about using the Super LOGO editor.

c. Chapters 16 through 18 introduce the use of multiple turtles and new turtle shapes.

3 . Chapters 19 through 26 cover l ist processing, including multi- tasking applications of list

processing.

4 . Chapter 27 contains sample sets of more complex turtle moves that you may wish to

explore.

1

The Radio Shack Super LOGO program is available in three versions. The Disk version

(26-2716) requires a 32K disk-based Tandy Color Computer with Color BASIC. The Network 2

version (26-2738) is designed for use with a Tandy Network 2 Controller, a 32K disk-based
Tandy Color Computer as host system, and from one to sixteen 32K disk- or cassette-based

Color Computers as student stations. The ROM version (26-2717) requires a 16K ROM-based
Tandy Color Computer with Color BASIC. Procedures that you write can be saved on diskette

or on cassette tape using the Disk version, on cassette using the ROM version, or on a dis
kette at the host computer using the Network 2 version.

2

1. A BIT ABOUT Super LOGO

Super LOGO is a computer language for children. Like all the best things for children, Super

LOGO can provide endless fascination and challenge for adults as well. At first glance, Super

LOGO may seem to be simply a language for drawing pictures because the result of running

the procedures in the early sections of the manual is almost always a picture. However, Super

LOGO is far more than an easy way to draw pictures. Super LOGO is a tool for learning about
some of the most powerful concepts in mathematics, physical sciences, computer science, prob

lem solving, and language syntax-but in a way so appealing and simple that "even a kid can

do it."

Notice that we said that Super LOGO is a language for learning; we very intentionally did

not say that it is a language for teaching. The role of the learner is all important. Super

LOGO puts the student in the role of explorer, one who sets goals (problems to solve) and tries
to find a way to those goals. The role of the teacher is guide, one who stays in the background

as much as possible, one who does not set the goals for the learner, and one who assists only

when asked. Effective use of Super LOGO has much of the flavor of play: " It's not whether you

win or lose, but how you play t he game." The goal the student reaches is not as important as

the process of seeking the goal .

Super LOGO is based on a set of ideas for use of the computer. These ideas were first devel

oped under the name " LOGO." Many people have contributed to the LOGO project - too many

to list - but we must mention the names Wallace Feurzeig, Harold Abelson, Andrea diSessa,

and, with special emphasis, Seymour Papert. Most of the development and testing of LOGO

was done at MIT. There were two vital steps in bringing the LOGO approach to the attention
of the educational community. One was the publication of two books: Mindstorms by Papert

and Turtle Geometry by Abelson and diSessa. Any serious user of LOGO will want to read

those books. The other was the implementation of the LOGO language on microcomputers, a

step which decisively moved LOGO from the laboratory into the classroom. If you are already

familiar with LOGO, you will find much of Super LOGO to be familiar too. Wherever possible
we have kept the same syntax as LOGO, and the logical structures of the two languages are

essentially the same. Most of the programs in books on LOGO will run in Super LOGO with

out change.

Super LOGO is not just LOGO un�er another name for another computer; there are some
differences between the two. LOGO handles words and letters via a set of operations called list

processing. Many versions of LOGO allow the advanced user to handle nested lists, but Super

LOGO restricts the user to simple lists. Many versions of LOGO use floating point numbers in

arithmetic; Super LOGO uses decimal arithmetic. Both of these restrictions are imposed to
allow the following very significant additions. Super LOGO provides multiple turtles whereas
most versions of LOGO provide only a single turtle. Super LOGO thus can be used to

introduce important concepts like multi-programming and messages between independent
procedures, but still with great simplicity. Consequences of multiple turtles include provision

for simple animation and the potential for user-created games. All these are possible because,

in contrast to LOGO, the memory requirements of Super LOGO are modest. Super LOGO also
provides a mode for doodling, designed for children who are too young to type keywords

reliably.

If you are just starting on computers, all that sounds rather complex . That's because we're just

talking about it instead of doing it. Let's do it.

3

2. GETTING �ARTED

The steps below tell you how to load Super LOGO into your Color Computer system. You will
want to have some way to store your favorite creations for future display, so you will want to

have a cassette recorder attached to your computer system. Consult the chapters on installa

tion and operation in your copy of the Color Computer Operation Manual that came with your
computer system, for instructions as to proper cable connections for the cassette player. DO
NOT TURN ON THE POWER YET!

Loading Super LOGO Using a Color Computer Cassette System

l. With the computer's power off, plug the Super LOGO cartridge into the slot on the right
side of your Tandy Color Computer. Check that the label is up and that the cartridge is

seated firmly.

2 . Turn power on. (The computer power switch is on the back left corner of the computer.) The
screen will display the prompt:

LOGO

SUPER LOGO COPYRIGHT 1984

LARRY KHERIATY & G EO RG E G ERHO L D

L ICENSED TO TAN DY CORP.

ALL R I G H TS R ESERVED.

Now turn to "Using the Super LOGO Program" on page 6 .

5

Using the Super LOGO Program

You shou ld now be in BREAK mode, whi ch is indicated by the prompt which ends

LOGO:

at the left of the screen. When you are i n any other mode, you can return to BREAK mode at

any ti me by any one of three acti ons:

1 . If you press the I BREAK I key, wh atever you are doing wi ll be interru pted an d th e com
pu ter wi ll retu rn you to BREAK mode. If a procedu re (a program that you have written i n

LOGO) i s actu ally ru nni ng, you mu st press the I BREAK I key twi ce : once to i nterru pt the
procedu re, and a second ti me to get i nto BREAK mode.

2 . T he RESET bu tton (located on the righ t rear side of th e compu ter) will always retu rn you

to BREAK mode, bu t you wi ll lose all programs in memory.

3. A complete restart (as described on page 5) will place you i n BREAK mode.

BREAK mode wi l l be covered i n detai l in Chapters 3 and 10 . For now, let's move into RUN
mode by pressing []]. There is the tu rtle, sitting in the center of the screen faci ng straight

u p. Admi ttedly, this tu rtle does not bear a strong resemblance to the ordinary pond-type tu r
tle; bu t, li ke an ordinary tu rtle, it can crawl forwards and backwards and it can tu rn right

and left. Unli ke ordinary tu rtles, compu terized tu rtles can drag their tails to leave tracks (in

colors) or raise their tai ls and not leave tracks. Tu rtles can even be made invisible.

T he name " tu rtle" was given ori ginally to a tiny mechanical robot which cou ld be made to

crawl arou nd the floor u nder compu ter control. The name probably had mu ch more to do with

the speed of th e robot than wi th the shape of the robot. The track left by the tu rtle was called
a tu rtle graphic. The term " tu rtle graphics" i s now u sed to indicate a way of drawi ng where

li nes are described by a direction and a length (the alternative is to describe a line by giving
the coordinates of the two end poi nts of the li ne, a method called-strangely-vector graphics).

The i tem whi ch moves i s called the tu rtle, even wher:i i t is ju st a shape on the screen. The

graphics portion of Su per LOGO is a langu age for controlli ng tu rtles.

We have a tu rtle in the center of the screen, i tching for action. Let' s tel l the tu rtle to move for

ward. Simply type

FORWA R D 49

Then press I ENTER I .

The nu mber after "FO RWARD" tells the tu rtle how far forward to move. After you enter

FO RWA R D 49 the screen will show a tu rtl e track.

6

NOTE: If you forget to leave a space between "FORWARD" and "41", you' ll see the mes
sage "I DON'T KNOW HOW TO FORWAR D 41!' You' ll get a similar message if

you make any other typing error. Just press I ENTER I to get another chance to enter
"FO RWARD 41!' You can use the left- arrow key to correct typing errors before you

press I ENTER I . Simply backspace to the beginning of the error, and retype the turtle

instruction.

It won't be long before you get tired of typing FORWARD all the time, so there is an abbrevi

ation which has the same effect. Enter the following (that is, type it and press I ENTER I):

F D Hl

Try to get a feel for the screen size and resolution. Try

FD 1

It's almost too little to see. Then try with a larger number, like

F D H�O

The turtle moved, but it didn't leave a complete track. When the turtle goes off the top of the

screen, it reenters at the bottom, a process which is called " wrapping around." However, at
this stage we have the bottom four lines of the screen reserved for text, so the portion of turtle

track which passes through those bottom four lines does not appear.

Now let's find out how far it is from the center of the screen to the top. To get a fresh start and

a clear screen, enter the word (not the single key)

CLEAR

7

Then try to make the turtle track go to the top of the screen with a single F D command.
When you have it exactly right, the turtle itself will wrap around (disappearing into the bot

tom four lines of the screen- disappearing because these lines are reserved for text), but the

line will be drawn to the top of the screen. No doubt it will take you several tries of CLEAR,

FD to hit the top exactly, using the smallest possible number.

By now, you' re probably tired of drawing vertical lines. It's time to turn the turtle. Clear the

screen (by typing CLEAR, then pressing I ENTER I), and enter these commands

FORWARD 40
RIGHT 90

to make the change more obvious, enter

FO RWA R D 50

RIGHT 90
rORl-IARD 50

The turtle understands degrees.

If you are using Super LOGO with small children, · we have a suggestion. There is now quite a

bit of information gathered about the effective use of LOGO with small children. LOGO is a

language for experimentation, not a language to learn by imitation of items from a textbook.
Resist any temptation to explain degrees to the child who does not already know about them.

The child will learn about degrees easily from experimenting with LOGO.

Again, we soon get tired of typing RIGHT so we abbreviate RT. Try

RT 90

(Think " right turn" for RT.) Now the turtle points down. We' re half way to drawing a rectan

gle, so let' s finish it. Enter

F D 40 RT 90

and see if you can finish it.

8

Let's look at one very import� nt fact about turtle behavior. Clear the screen and enter

RT 45 RT 45

This produces the same heading as RT 90. When the turtle is told to turn, it turns that far
from whatever its current heading is. We are telling the turtle how to change its heading; we

are not tel ling the turtle to head toward some point. In the same way, when we tel l the turtle

to go forward we are telling the turtle how to change its position; we are not telling the turtle

to go to some point on the screen. Thus the position and heading of the turtle after one of
these commands will depend on where the turtle started.

So far, we have learned three primitive turtle commands. (Papert would say, three words in

" turtle talk.") They are CLEAR, FORWARD, and RIGHT. With these three, we can draw any

figure which will fit on the screen and which could be drawn on paper without lifting the pen

cil from the paper. You might try drawing a triangle (three-sided figure) and a pentagon (five

sided figure) for practice. If you're like us, you don't remember the angles for pentagons, so

experiment.

We could go a long, long way with
_
just RIGHT and FORWARD, but LEFT and BACK are

useful too. Clear the screen and try

LEFT 90

(We could have used the abbreviation LT for left turn.) Now let's make the turtle move back

wards. Try

BACK 40

(or, in abbreviated form, BK 40). Notice that the turtle is somewhat transparent. You can see

the track through the turtle. If you'd rather not see the turtle at all, you can hide it. Enter

H IDETURTLE

9

(Here the abbreviation HT is much shorter.) The turtle is still there, but it is invisible. Type

LT 30 BK 30

and then press I ENTER I , to see the invisible turtle's track. Notice that we can type more

than a single turtle command on a l ine as long as we have at least one space between the

commands. To make the tu rt le visi ble again, t ype

SHOWTURTLE

(you guessed it, abbreviated ST). Then, to turn it away from the track, type

LT 120

At this point, the only thing between us and an endless variety of stunning graphics is an
immense amount of typing. In the next two chapters, we 'll learn some things which will save

us from this immense amount of typing.

10

3. REPEAT

There are many times when we want to repeat a series of turtle commands several times. For
exampl e, if we wanted to draw a square we woul d need to repeat the sequence

FD 60 RT 90

four times. Fortunatel y, the turtle understands a control statement which saves us from typing

the same thing four times in succession. The control statement is REPEAT. With a cl ear

screen, try

REPEAT 4 (FD 60 RT 90)

RFPEAT � CFO 60 RT 90)

Notice that after the statement REPEAT we must tell the turtl e how many times to repeat,
and we must tel l the turtle what to repeat. The " what" is encl osed in parentheses. Here the

number of times to repeat is 4, and the " what" to repeat is FD 60 RT 90.

The figure the turtle has just drawn may be more of a rectangle than a square. On some TV
sets, the size of a turtl e step in the vertical direction is a l ittl e different from the size of a tur

tl e step in the horizontal direction. If you plan to use the TV mainl y for LOGO, you may want

to adjust the set for this difference . By adjusting the Vertical Size Control you shoul d be abl e
to change the rectangle into a square. However, you must understand that this will affect the

proportions of everything you display on the TV, so don't make the change without considering
other uses of the set.

Now that we have a way to repeat a short list of commands as often as we wish, we can draw a

series of regul ar polygons. For example, a triangl e

REPEAT 3 (FD 60 RT 120)

a pentagon

REPEAT 5 (FD 60 RT 72)

11

and a hexagon

REPEAT 6 (FD 40 RT 60)

.-..
,,,..

...-·

I
L� ,,... ..

.... /
·-

REPEAT 6 CFO �O RT 60)

Remember that you can use CLEAR as a command to start with a fresh screen whenever you

want.

One of the most useful figures to draw is a circle. The idea is that one draws a circle by mov

ing forward a bit and turning a bit, many times. For a complete circle to be drawn, the total of

all the repeated turns must be at least 360 degrees. Two different sized circles could be drawn
by the following:

REPEAT 360 (FD 1 RT 1)
REPEAT 180 (FD 1 RT 2)

Many other combinations are possible.

The figures drawn above are really 360 - and 180 -sided polygons instead of circles. They look

like circles because of the finite resolution of the screen display. In fact, even cutting the num
ber of sides down to 36 still gives a pretty good circle.

REPEAT 36 (FD 1 0 RT 1 0)

There are two advantages to using a smaller number of sides; the circle is drawn faster, and

we can adjust the size of the circle in smaller steps. Try

12

REPEAT 36 (FD 11 RT 1 0)
REPEAT 36 (FD 1 0 RT 1 0)
REPEAT 36 (FD 9 RT 1 0)
REPEAT 40 (FD 9 RT 9)

Several geometry lessons could be built around the examples given above. There is usually

little problem in getting the number of sides correct (the number of times to repeat). The chal

lenge is to get the angle of the turn correct. Let the user experiment with different angles

until they get the correct angle. After they have gotten a few correct, see if they can general

ize and predict the angle - say, for an 8-sided polygon (an octagon). It would be difficult to
overstate the value of these kinds of activities. They are much closer to the activities of

mathematicians and scientists than what is usually taught in science and mathematics

courses.

13

4. MODES AND EDITING

New users of computers often find the idea of modes awkward. Mode is the term used to
describe the separation of the various things a computer language can do into groups. There

are a number of good reasons for having various modes. One is that there are not enough
different keys on the keyboard to control all the different things that need to be done. The
same keys can be used for different tasks in different modes without confusion (at least on the

computer' s part).

The fol lowing diagram is a map of the modes in Super LOGO.

y / l.___
BRE
_

AK
___.I �REAK

/BREAK R! tBREAK �
.--- -

E
-
D
-
IT
--1 B @ I DOODLE I

The keys which trigger the jumps between modes are indicated on the arrows. You' ve already
been in BREAK mode; that' s the mode that you are in when you start. You' ve already been in

RUN mode; you got there from BREAK mode by pressing [BJ. Now we want to move into
EDIT mode. The map shows us that we need to leave RUN mode (by pressing the I BREAK I
key) and then get into EDIT mode (by pressing the cg] key).

EDIT mode provides a line- oriented editor. EDIT mode is used to create and alter programs

written in Super LOGO, but for the rest of this chapter we will forget LOGO and concentrate

on the mechanics of using EDIT mode. We' ll do something familiar - write a note to

Grandma.

When you get into EDIT mode, a short horizontal line appears at the start of the bottom line

of the screen. This line is called the cursor. The cursor indicates where any typed letters, num
bers, etc. , will appear. Start the no te by typing

DEAR GRAN DMA,

Press I ENTER I , and the cursor moves to the start of the next line. Type the next line as

l'M STARTING TO USE AN EDITOR.

Again press I ENTER I to complete the line. Notice that this editor produces only upper-case
letters; Super LOGO uses only upper-case letters.

We could continue to enter as many lines as we wanted in the same fashion. Let' s assume that

this is to be a very short note and that we now want to quit editing. Press I BREAK I. Upon
refl ection we decide to alter the note, so we return to EDIT mode (press cg]). The first line of

our note appears with the cursor at the start of the line.

15

We decide t o change t he word STARTING in t he second line of t he not e t o t he word

BEG INN ING . To do t his we first must display t he second line and posit ion t he cursor under

t he S in STARTING. We move t he cursor by use of t he arrow keys. Up-arrow and down-· arrow
move t he cursor t o a different line, and left -arrow and right -arrow move t he cursor wit hin a

l ine.

Changing lines always reset s t he cursor t o t he st art of t he line. Arrow commands which make

no sense are ignored. Thus if we press right arrow when t he cursor is under t he comma follow
ing GRAN OMA, not hing happens because t here are no more charact ers on t he line.

Let' s go t hrough t his st ep by st ep. To see t he second line of t he not e, press t he up-arrow key

once. Then press t he right -arrow key several t imes t o posit ion t he cursor under t he S in

STARTING . Then t ype

BEGIN

Not ice t hat t he overt yping simply replaces t he lett ers. Now we have anot her kind of change t o

make because BEG INN ING has one more lett er t han STARTING. We want space for anot her

N before t he ING . To creat e a space we hold down t he I SHIFT I key and press t he right -arrow
key. Now we can t ype t he ext ra N in t he creat ed space. Remember: t o insert , press I SHIFT I
right -arrow t o creat e t he space, t hen t ype in what you want .

Next let' s change t he line from

l 'M BEG INN ING TO USE AN EDITOR.

t o

l'M LEARNING TO USE AN EDITOR.

Again posit ion t he cursor at t he st art of BEGIN N ING and overt ype t he charact ers you want
t o change. Here t he problem is t hat an ext ra N remains. To delet e a charact er (or space) hold
down t he I SH IFT I key and press t he left- arrow key. Try it , and remember: press I SH I FT I left
arrow t o delet e.

Poor Grandma isn't going t o know who t he not e- is from unless we add a line at t he end. Use

t he up-arrow key t o move t he cursor as far down as you can. It should be at t he st art of a

blank line following t he t ext . We want t o skip a l ine before signing t he not e, so press

I ENTER I once. Not ice t hat when you press I ENTER I , a line is added at t he end. But if t he

cursor is wit hin t he t ext , pressing I ENTER I has t he same effect as t he up-arrow. Now space

over and sign your name.

While we are at it , we should skip a line aft er DEAR GRAN DMA. That is, we want t o

change

DEAR G RAN DMA,
l'M LEARNING TO USE AN EDITOR.

LOVE, ANN

16

to:

DEAR G RAN DMA,

l'M LEARNING TO USE AN EDITOR.

LOVE, AN N

Position the cursor at the beginning of the line "l'M .". Then hold down the I SHIFT I key

and press the down-arrow key. Move the cursor down to check that you got what you wanted.

Remember: to insert a new line, position the cursor at the start of the following line; then
press I SH I FT I down-arrow.

We want to make one more change. We want to change the closing to

LOVE,
AN N

We want to break one line into two. Position the cursor where you want the break to occur;

then press I SH I FT I down-arrow to break the l ine. You'll have to insert some spaces to move

the name over as shown above.

This, we think, is the final form of the note, so we exit EDIT mode (press I BREAK I) . To make

a last check, we get back into EDIT mode (press �) . To get the whole note on the screen
without repeated pressing of up-arrow or I ENTER I we press I SH I FT I up- arrow twice. This

will show us everything in memory. If we want to interrupt this process, just press any key to
stop the scan. To restart the scan, press I SHIFT I up-arrow twice again. To jump back to the

start of the text, press the I CLEAR I key.

That covers the basics of using the editor. You should practice a bit with it so that when we
return to Super LOGO you can concentrate on the language and not have to worry about the

mechanics of the editor. Chapter 15 covers the more advanced features of the editor.

To conclude this chapter, we give a summary of the editing features.

To:

get into EDIT mode

display the next line

of text

add a line at end

of text

move text down one line

move cursor right

move cursor left

Press:

I BREAK I.�

rn or I ENTER I
([]] has no effect at last l ine)

I ENTER I , then type the line

[I] (no effect at top line)

I -+ I (no effect at line end)

1-1 (no effect at l ine start)

replace character

insert character

position cursor, overtype

position cursor, I SH IFT 11-1
(no effect if line fu ll) , then type character

delete character position cursor, I SH IFT 11 +-I
(or delete blank line)

insert line position cursor at start of following line,
ISH I FT I DJ

break line position cursor at break point, I SH IFT I DJ

return to top line I CLEAR I

scroll or scan through text I SH IFT I DJ twice

stop scroll or scan any key

delete from cursor I SH IFT 11 CLEAR I
to end of line

search for a word I SH I FT I DJ followed by the word, followed by I ENTER I

18

5. PROCEDURES

You have now mastered five primitive turtle commands (CLEAR, FORWARD, BACK,
RIG HT, and LEFT). Next we want to combine these commands into a unit which we call a

procedure. T he first step is to tell the computer not to obey each command as it is typed, but

to store the commands. T his is what happens in EDIT mode. Press I BREAK I , then hold

I SH I FT I down and press I CLEAR I (to clear the memory of old programs). T hen get into EDIT

mode (press [fil).

T he screen should be blank with the cursor in the lower left corner. If the screen is not blank,

return to BREAK mode (by pressing the I BREAK I key), hold the I SH I FT I key down, and
press the I CLEAR I key firmly. Return to EDIT mode by pressing [fil.

You are now using a line-oriented editor. We will practice using the editor as we create and
edit procedures. Our first exercise will be to write a procedure for drawing a rectangle. First

we must give the procedure a. name. We'll call this first one "RECTANGLE." T he first line of
the procedure contains the name, and we let the computer know that we' re naming a proce

dure by starting the first line with the keyword "TO." To name this first procedure
RECTANG LE, enter

TO RECTANGLE

Procedure names must fit on a single line, must contain no spaces, and must not be the same
as any of the keywords or abbreviations (for example, REPEAT, FORWARD or FD). T he key

word TO must begin in column 1 .

If you made a typing error when you were using RUN mode, you got the error message "I
DON 'T KNOW HOW TO " followed by your mistyped command. Because a procedure name
can be almost anything, the computer assumes that any characters which don' t form a correct

keyword must form a procedure name. If the characters are really a typing error, then the

name is not found in the list of procedures and the error message is sent.

Next type in the turtle commands for drawing the rectangle. T hat is, type

FD 50 RT 90 FO 30 RT 90 FD 50
RT 90 FD 30

Many commands can be typed on a single line as long as they are separated by one or more

spaces. To finish the procedure, type

END

o n a new line and press I ENTER I.

To try out RECTANGLE, you must leave EDIT mode (by pressing the I BREAK I key) and then
get into the RUN mode (by pressing the [BJ key). To actually run the procedure, type

RECTANGLE

and press I ENTER I .

19

That's so neat that we should try it again and again. Ty pe and enter the procedure name at
least three more times. Now the screen should show

By placing the procedure RECTANGLE in the computer' s memory, we have taught the turtle
to understand a new word. The turtle now understands RECTANGLE in the same way that it

understands LEFT, RIG HT, FORWARD, and BACK.

Before moving on to other procedures, we want to review use of the editor. Press I BREAK I to
return to BREAK mode; then press [g] to reenter EDIT mode. The screen should now show the

first line of the procedure RECTANGLE. Let's change the name to BOX. Use the right-arrow

key I-. j to position the cursor under the R in RECTANGLE. Then type BOX. Remember,
overtyping replaces characters. We need to delete the remaining letters, which we do by hold

ing down the I SHIFT I key and pressing the left-arrow key I+-I . We can see the rest of the

l ines in the procedure by pressing either I ENTER I or the up-arrow key []] several times.

20

It is good programming practice to clarify the stru ctu re of a procedu re by indentation. Here we
want the procedu re BOX to look like this

TO BOX
FD 50 RT 90 FD 30 RT 90 FD 50
RT 90 FD 30

END

To make these changes we mu st insert a cou ple of spaces at the beginnings of the second and

third lines. Move the second line to the bottom of the screen by u sing the u p- and down- arrow
keys. The cu rsor will move to the start of the line whenever you change lines. To insert spaces,

hold down the I SH I FT I key and press the right-arrow key. If this does not insert spaces, it

means that the line is already fu ll . Insert spaces at the start of line 3 as well .

The stru ctu re of the procedu re wou ld be even clearer if it were typed as follows.

TO BOX
FD 50 RT 90
FD 30 RT 90
FD 50 RT 90
FD 30

END

These changes requ ire u s to break single l ines into mu ltiple lines. To break a line, position the

cu rsor where you want to break the line, hold the I SHIFT I key down and press the down

arrow key.

What if we want to add lines to a procedu re; for example if we want to add a diagonal line

throu gh the box? We'd have to tell the tu rtle to tu rn and go forward. You' d better ru n BOX to

get an estimate of the angle and distance (remember press I BREAK I , then press [BJ, then
enter BOX). The tu rtle needs to be tu rned more than 90 degrees to point along the diagonal.

Make a gu ess and retu rn to EDIT mode (i BREAK I, cg]). Now place the cu rsor u nder the E in

EN D; hold down I SHI FT I and press the down-arrow key. This inserts a blank line (try the
u p-arrow key to check that EN D }}. as ju st been bu mped down one line). You can now insert

you r RT and FD commands in this new blank line. It will no dou bt take you several tries to

get the angle and length exactly right; that will give you good practice in bou ncing back and

forth between RUN and EDIT modes. (No fair u sing you r knowledge of trigonometry; with

tu rtles you are su pposed to experiment.)

In this chapter we have covered two main topics. We have learned how to enter and change

mu ltiple command procedu res, and we have learned how to teach the tu rtle to u nderstand
more complex commands via procedu res.

21

6. SUBPRO CEDURES

Once we have tau ght the tu rtle a new word by writing a procedu re, we can u se that new word
in other procedu res. Retu rn to EDIT mode and remove the commands for drawing the diagonal

(we u sed RT 122 FD 59) from BOX. Now move to a new line (press I ENTER I). In fact a
blank line between procedu res will help keep things easy to read, so press I ENTER I again.
We're going to write another procedu re to draw the pattern of fou r boxes. We'll call it FOUR,
so type

TO FOUR
BOX
BOX
BOX
BOX

EN D

Notice that we've u sed BOX as a tu rtle command in the same way that we u sed FORWARD
and RIGHT within BOX. Ru n FOU R to see that i t works. The resu lt i s the same as that
shown on page 20 .

To ru n the procedu re FOUR, the compu ter mu st have available the su bprocedu re BOX. Both
procedu res mu st be in the program space when FOUR is ru n, bu t their order within that

space is of no importance. We cou ld have written FOUR first and then written BOX with
exactly the same resu lt.

The procedu re FOUR can be shortened by u se of the REPEAT control statement. The altered
form of FOUR is

TO FOUR
REPEAT 4 (BOX)

END

The space after the nu mber 4 i s optional. The parentheses can inclu de a whole list of tu rtle
commands and su bproce du re names. The list in parentheses can extend over many lines, bu t

the parentheses are essential.

Now that we have tau ght the tu rtle what FOUR means, we can move to a higher level proce
du re. T ry

TO MANY
REPEAT rn (FOUR RT 9)

END

23

You are probably tired of following the manual and are consumed with curiosity. What will
happen ifl change the number on the REPEAT in MANY; what will happen ifl change the

angle in MANY; what will happen if I restore the commands to draw the diagonal in BOX?
Don't hesitate to find out by trying; that's the whole point of Super LOGO. Try triangles, pen

tagons, hexagons, threes and fives instead of just boxes and fours.

Here is another sample.

24

TO DIAMON D
F D 50 LT 45 F D 50 LT 135
FD 50 LT 45 FD 50

EN D

TO DIAMOND2
REPEAT 29 (DIAMOND RT 40)

EN D

When you run DIAM O N D2, the pattern on the screen is missing the bottom portion. That is
because the computer is using a split screen; the top of the screen is reserved for graphics, and

the bottom four lines are reserved for text. The turtle draws behind the text portion of the

screen; it does not wrap around until it reaches the very bottom of the whole screen. However,

when the computer is using a split screen, we cannot see what the turtle draws behind the

text area.

We can see what the turtle draws on the full screen by entering one of the statements

DRAW or FULLSCREEN (abbreviated FS)

before entering the procedure name. Of course, this can all be on one line; for example

DRAW DIAMON D2

Be carefu l of one thing when using the full screen. If you type more than three lines of com

mands in RUN mode, the text lines at the bottom of the screen will scroll up. In fu ll screen,

these lines could contain turtle tracks or even turtles. The scrolling up will mess up your pat

tern and at times might make it appear that there are two turtles. Therefore, avoid giving

more than three lines of commands when using the fu ll screen.

The easiest way to return to spli t screen i s to press I BREAK I and then return to RUN mode.

Super LOGO is a structured language. A complex program written in Super LOGO could have

the following structure.

Each letter within a box represents a procedure; each line of type on the page includes the

subprocedures of a particular level; the lines indicate which subprocedures are used by each

procedure. There are four levels of procedures within this program. The master procedure A
(level 0) might use the subprocedures of level 1 in the order B, C , D, C. Subprocedure B might
use the subprocedures of level 2 in the ordef'. E, F, E; subprocedure C might use the subproce
dures of level 2 in the order G, F, H etc. Notice that subprocedures can be used many times

and many places within the overall program.

25

So far, in our examples, we have been working from the bottom up, defining a first procedure,

then writing a second procedure that uses the first procedure as a subprocedure, etc. That is
typical of programming manuals where the emphasis is on the mechanics of a language

instead of on problem solving. It is interesting to adopt that approach with Super LOGO at

times because the results are often unpredictable. However, as we become more serious we

often will have a problem we wish to solve. Then we should work from the top level down. Now

we illustrate that process.

The sample problem is to create the fol lowing pattern.

PATTE�H

Obviously, the figure is so symmetrical that it must contain a repeated pattern. Counting

shows that something is repeated six times. The crucial step is to recognize that the element

that is repeated six times is a square with a circle inside.

PAT1

Therefore our main procedure could be

26

TO PATTERN
REPEAT 6 (SQUARE - C IRCLE RT 6'1)

EN D

The six-fold symmetry tell s us to repeat 6 times with turns of 60 (because 6 * 60 = 360).

As yet we have no idea how to draw a square with a circle inside. Notice that we use the
hyphen as part of the procedure name to avoid using a space; a space between the two words

would indicate two subprocedures. We can use a hyphen this way any place it cannot be con

fused with a minus sign.

Now we move to the next lower level.

TO SQUARE - CIRCLE
C IRCLE
SQUARE

EN D

Again we break the task into simpler tasks. This time the breakdown is obvious; you draw a
square around a circle by drawing a circle and then a square.

Now we drop down to level 2. The obvious procedure for drawing a circle is

TO C IRCLE
REPEAT 360 (FD 1 RT 1)

END

This gives a circle, but one that i s rather large. I f you try it, you'll see that we'll never get six
of those on the screen. To make the circle smaller we try

TO CIRCLE
REPEAT 180 (FD 1 RT 2)

END

T hat's more like it. Next we need to fit a square around this circle. One disadvantage of this

way of drawing circles is that we do not know the size (that is, the radius) of the resulting cir
cle. We can find it by experiment. Simply run the CIRCLE procedure, then turn the turtle

right 90 degrees and move the turtle forward until it crosses the circle. A first guess of 50

seems about right. When we try FD 50, we find that we need a bit more, and that

the diameter of the circle is about 56 units.

It appears that we should then enter a procedure to draw a square with sides of 56 units.

TO SQUARE
REPEAT 4 (FD 56 RT 90)

EN D

27

D
S Q U A R E

This will draw a squ are, bu t i t will leave us with a problem. SQUARE starts with the tu rtle
at a corner of the squ are. The corner is an awkward place to start drawing a squ are which is

arou nd a circle. This example shows that when procedu res are to be u sed together, some atten

tion mu st be devoted to making them fit or connect. We choose to make the two procedu res
connect by starting and ending the squ are at the center of a side, where the circle and the

squ are tou ch.

TO SQUARE
REPEAT 4 (FD 28 RT 91a FD 28)

EN D

Now verify that this set of procedu res is a solu tion to the original problem by ru nning
PATTERN .

Let's analyze what we've ju st done. The road map for attacking the problem was to break the

problem into a set of su bproblems, and in tu rn to break each su bproblem into even simpler
su bproblems u ntil the su bproblems can be solved by a single REPEAT statement. Specifically,

we broke the original problem into the problem of drawing SQUARE-CI RCLE six times; we

broke SQUARE-CIRCLE into the problems of drawing a squ are and drawing a circle. These
last two problems were easily solved with a single REPEAT statement. In general, we follow

this sequ ence in attacking a problem, althou gh we do not insist that the lowest level proce

du re consist of a single REPEAT statement.

One of the reasons for u sing Su per LOGO with children is that it is an excellent way to teach
children a most powerfu l and u sefu l general problem- solving approach. That approach is what

we have ju st illu strated. Basically, it involves working from the overall view down to the

details by breaking each problem into pieces. Moreover, there is no limit to the nu mber of

problems l ike the one given above that can be generated to give children practice in problem
solving. By reviewing the children' s solu tions for style and clarity and by comparing their
solu tions with other solu tions of the same problem, you can teach them that problems may

have several equ ally good solu tions bu t also that not all solu tions are equ ally clear and u nder

standable. In a teaching situ ation, give the stu dents feedback on the style of their procedu res

as well as on the correctness of their procedu res.

28

7. VARIABLES

" Variable" is the name used to describe unique storage locations where numbers, letters,

words, or sentences can be kept. In this chapter we'l l use variables only for keeping numbers.

We specify the contents of a variable by typing a colon (:) followed by any number of letters

and/or numbers. Variables can be used anywhere numbers can be used. By using variables in

place of numbers, we can make our procedures useful in a wider variety of applications. For
example, we can make our SQUARE procedure draw squares of many sizes.

TO SQUARE : SIDE
REPEAT 4 (FD : S IDE RT 90)

EN D

If you came here directly from the last chapter, then there is another version of SQUARE in

memory. To clear out the memory, press I SH I FT 11 CLEAR I while you are in BREAK mode.
Then get into the EDIT mode and enter the new version of SQUARE. Now, to run SQUARE,
get into RUN mode and enter

SQUARE 40

Because we have l isted the variable : S IDE on the TO statement, we must give a value when

we call (or use) the procedure SQUARE. Now try a variety of other numbers, for instance

SQUARE 60
SQUARE 20

Notice that the computer takes the number which follows the procedure name SQUARE, sees
that that number is the value of the variable : SI DE, and uses that number every place the

variable : SI DE appears within the procedure.

What happens if we forget the number? Try

SQUARE

If we don' t provide a number, then ·the computer provides a zero. The brief flicker is due to the

turtle turning in place while drawing a square with zero length sides.

Variables can be used in other positions as well . Here's another example.

TO DESIGN : LENGTH : TIMES
REPEAT : TI M ES (SQUARE : LENGTH

RT 360 / : TIMES)
END

Enter this and try running with a few different values of : TIMES and : LENGTH. For

example

DESIGN 40 24
DRAW DESIGN 5" 1 0

29

The computer keeps track of the variables by the order. Because the order in the TO state

ment for DESIGN is : LENGTH : TI M ES, the command DESIG N 40 24 causes the value

40 to be assigned to : LENGTH and the value 24 to be assigned to : TI M ES.

Notice also that the name of the variable in the call of SQUARE (SQUARE : LENGTH)
need not be the same as the name in the definition of SQUARE (TO SQUARE : S IDE). By

the time the command SQUARE is reached within DESIGN , the variable name : LENGTH
has a value (for example, 40). The value, not the variable name, is passed to SQUARE and
then assigned by SQUARE to the variable : SI DE.

Variables l isted on the TO statement are local to the procedure. Again we illustrate using the

previous programs. Enter

TO DESIGN : LENGTH : N
REPEAT : N (SQUARE : LENGTH

RT 360 / : N)
EN D

TO SQUARE : N
REPEAT 4 (FD : N RT 90)

EN D

Here the variable : N is used for two different quantities, one in the main procedure DESIG N
and another i n the subprocedure SQUARE. This causes n o problems or confusion because the

variables for the two procedures are kept completely separate in the memory. The variable : N
in the main procedure refers to a different memory location than the variable : N in the
subprocedure.

If we want a variable to be local to a procedure, we mention it in the TO statement which

begins the procedure. We also can create global variables, variables which use a common mem

ory location in all procedures in which they appear. Global variables are created when you use

them in a procedure without including them in the TO statement. This provides one way to

share information among procedures.

30

DESIGN contains our first example of arithmetic expressions, here 360 / : N . For a while we'l l

use only the standard four arithmetic operations: addition (+), subtraction (-), multiplication
(•), and division (/). No parentheses are needed unless the order of operations is non-standard.

Thus, in Super LOGO,

2 * 3 + 4 = 1 0
2 * (3 + 4) = 1 4

The following procedures give additional examples of the use of variables and arithmetic
expressions.

TO SQUIGGLE
FD 7

REPEAT S
(FD 4 RT 45)

FD 7

REPEAT S
(FD 4 LT 45)

FD 7
END

TO SQUIGGLES : SI DE : ANGLE
REPEAT 360 / : ANGLE

(REPEAT : S IDE (SQUIGGLE)
RT : ANGLE)

REPEAT 360 / : ANGLE

END

(REPEAT : SIDE (SQUIGGLE)
LT : ANGLE)

Notice the use of the nested REPEAT twice in SQUIGGLES. If : ANGLE were 1SO and
: S IDE were 4, then each of the pairs of nested REPEATs will repeat 2*4 or 8 times. Try

SQUIGGLES 1 20
SQUIGGLES 3 60
SQUIGGLES 4 90

31

8. COLORS

Turtle tracks can be colored, and they can change color. Your Tandy Color Computer offers two
color "sets" (or "settings") in the high resolution screen on which turtles live. Up to now, you

have been running in color set 0. You can shift color sets by the COLORSET command.

Get into the RUN mode and enter

COLORSET 1

to change color set. Then enter

COLORSET g

to change back.

Within each color set there are four colors, numbered 0, 1, 2, and 3. The normal drawing color
is color 0 and the normal background color is color 3. Change the background color by

entering

BACKG RO U N D 1

or abbreviate

BG 1

Change the pen (or drawing) color by entering

PENCOLOR 2

or abbreviate

PC 2

You can erase a portion of a drawing by making the pen color the same color as the back
ground color and drawing over the unwanted part of the drawing.

Let's add color to some of our earlier procedures. One interesting choice is FOU R. Retype

BOX (see p. 2 1), then enter the procedure FOU R as:

TO FOUR
REPEAT 2 (PC 1 BOX

PC 2 BOX)
EN D

and to allow easy experimentation, make MANY into

TO MANY : N
REPEAT : N (FOUR RT 90 / : N)

END

33

We would like to be able to name the colors �ou will get with specific pen colors and color sets,
but colors vary from TV to TV; they vary with the color settings on the TV, and they may even

switch when you restart your computer. Try running MANY (from page 33) with a value of
1 fl. Then adjust the color and tint controls on your TV set to your satisfaction. On many TV's,
color set 1 will give more interesting colors, so be sure to try that too. You can change color

sets without redrawing the figure by typing

COLORSET 1

�A tN 1 0
COLOR SET l

An interesting variation can be created by the following changes.

TO BOX
PC 1 FD 50 RT 90

PC 2 FD 30 RT 90

FD 50 RT 90

PC 1 FD 30

EN D

34

TO FOU R

R EPEAT 4 (BOX)

E N D

TO MANY : N

R EP EAT 2 * : N/3 (FOU R RT 90 / : N)

E N D

Try it with : N = 90. I f i t i s too slow, or if you feel sorry for any turtle that has to run
around at that speed for so long, hide the turtle (HT) before calling MANY.

flf A t>< 9 0

You might prefer the colors you get with a dark background. Try setting the background to 0,
and rerun the preceding two examples MANY 10 and MANY 90.

35

9. OTHER TURTLE COMMANDS

There are a few additional turtle commands which we have not yet used. We can raise and

lower the turtle's tail , so we have the choice of leaving a track or not leaving a track. The com
mands are just what you'd guess: PEN U P (abbreviated PU) and PEN DOWN (abbreviated

P D).

Let's illustrate by removing the lines of one color from the previous figure. Change BOX to

TO BOX

PU F D 50 RT 90

PD PC 2 FD 30 RT 90

F D 50 RT 90

PU FD 30

E N D

and again run MANY 90.

Every figure so far has started in the center of the screen at a position called home. When we
get into the RUN mode the turtle automatically moves to home. If we want to start the turtle

somewhere else, we can. The turtle can be moved to an arbitrary and absolute screen position
by means of the SETX (abbreviated SX) and the SETY (abbreviated SY) commands. The

results of these two commands are absolute, not relative to the current position of the turtle.

No line is drawn, and no change in heading is made. For example,

TO DOU BLE

SETX 60

MANY 90

SETX 180

MANY 90

EN D

The heading of the turtle also can be set to an absolute value independent of its current head
ing. The command is SETH EADING (abbreviated SH or SETH). The heading can be any
thing between 0 and 359 degrees. Zero degrees is straight up. Try

TO DOU BLE

HT

sx 60

MANY 90

SX 180 SH 0

MANY 90

EN D

37

OOU f'L E

The remaining turtle instruction i s H O M E. H O M E returns the turtle to the home position

(the center of the screen) with a heading of (J degrees (straight up). The turtle is also made

visible.

Procedures which draw circles and parts of circles (arcs) are very useful in other projects.
There are some drawbacks to the CI RCLE procedure given in Chapter 5, page 27. It's hard to

predict the size of the circle from the size of the step, it's hard to find the optimum number of
steps for the best circle, and it's hard to figure where the circle is centered. The following
procedure is a useful alternative.

TO ARC : X : Y : RADIUS : DEG REE

PU SX : X SY : Y

REPEAT : DEG REE (FD : RADIUS

DOT BK : RADIUS RT 1)

END

We've used a new turtle command, DOT. As you would guess, DOT tells the turtle to make a

dot on the screen.

For a circle, try

ARC 15g mg 2g 35g

ARC 1 2g 1 2g 4g 35g

For an arc, try

ARC sg sg 1 gg 1 gg

For a partial circle, try

ARC 1sg gg sg 24g

38

ARC is slower than CI RCLE, but in some situations it is more convenient. With some values
of : RAD I US you might be able to get the same accuracy with fewer steps (for example,

REPEAT 180 and RT 2), but then the number of degrees will have to be divided to get the

right number on the REPEAT.

The following program again makes use of the SX and SY, here to get the right relative spac

ing of independent parts. The correct numbers for the two are found by trial and error. Try the

procedures with a variety of pen colors and backgrounds. Remember to remove the split screen

by entering

DRAW KI RSTIN

in RUN mode.

TO KI RSTIN

CLEAR SX 60 SY 80

R EPEAT 18 . (PENT 20 RT 20)

SX 95 SY 82

REPEAT 9 (PENT 15 RT 40)

EN D

TO PENT : S IDE

REPEAT 5 (FD : SI D E LT 72)

F D : SI DE

E N D

39

10. SAVING, LOADING, AND PRINTING
YOUR SUPER LOGO PROCEDURES

Although Super LOGO procedures can do an amazing amount with very little code, we still

don't want to have to retype procedures every time we start up. To avoid having to do this, you
can store procedures on cassette tape. This chapter describes how to do so.

To move procedures to and from cassette, we must be in BREAK mode. By now, you probably

have a number of procedures in memory that you would like to keep. Get into EDIT mode and

delete any that you do not want to save. The delete-line operation will speed the deletion of
unwanted procedures. I S H I FT 11 C LEAR I (that is, holding down the I S H I FT I key
and pressing the I CLEAR I key) deletes from the current cursor position to the end of the line.

To delete a whole line, position the cursor at the start of the line and press I SHIFT 1 1 CLEAR I .
Next get into BREAK mode (use the I B R EAK I key), and press [[] . At this point, the prompt

will be

LOGO: SAVE:_

You now have to tell the computer where to save the procedures that are in memory. Of course,

the tape recorder must be plugged in as described in the Operation Manual for the Tandy

Color Computer. Make sure that the volume control is set close to 5. Rewind the tape

(REWIND, STOP). Next press the RECORD and PLAY buttons so that they both stay pressed

down. If you are not using leaderless tape, pull out the MIC plug for about 5 seconds. (This
will make sure that you begin recording on blank tape.) Now you are ready to record the

procedures. Simply respond ITJ I ENTER I to the BREAK mode prompt:

LOGO: SAVE:_

When the recording is done, the BREAK mode prompt will be displayed again. If a number

and a question mark appear after the ITJ , then the procedures were not saved properly, so try

again.

Loading programs from cassette is also simple. Again it is necessary to be in BREAK mode. In

response to the BREAK mode prompt, press [IJ . The prompt then will read

LOGO: LOAD:_

The response here is exactly the same as for SAVE:. Use the letter T to load from tape. Then

press I ENTER I to start the process. Of course, you will have to have the volume on the

cassette recorder set to about 5 , have the tape rewound, and have the PLAY button depressed

before pressing I ENTER I.

41

At times you will want to carry out some more elaborate transfers between the computer

memory and tape. For example, you might want to add some procedures already on tape to the
procedures in memory. This would be the case if you had created a module of procedures for

drawing circles and polygons which you planned to use in many projects. A module of proce
dures can be added to whatever is already in memory by use of the M ERG E operation. Simply

respond to the LOGO: prompt with [MJ . At this point the prompt
will be

LOGO: M ERG E:_

To start the process, enter T.

We just learned how to combine sets of procedures; how do we save only a portion of what is in

memory? The computer recognizes special start and end markers. If these markers are present
in a set of procedures, then a SAVE operation saves only the lines between the two markers.
Therefore, to save only a portion of the procedures in memory you must first enter EDIT mode

to insert the markers. The marker for the start is >>, and the marker for the end is <<. Once

these two are in place, do a regular SAVE (I BREAK I, [[) , and ITJ ,). If you want to run the

procedures still in memory, you first should return to EDIT mode to remove the markers.

Note that with the M ERG E and the partial SAVE operations you can build new modules

which contain any combination of procedures selected from other modules, without retyping

any of the procedures.

If you have a printer for your Color Computer, you can print all the procedures in memory.
Again it is all or nothing, except that you can interrupt the printing by pressing I B R EAK I
without damaging or losing the programs in memory. To print, connect the printer as

described in the Owner's Manual; load the paper and turn on the printer.

You may have to reset the baud rate to get the printer to work properly. The baud rate is the

rate at which the computer sends characters to the printer; the computer must transmit at the
rate the printer expects. If the baud rate is wrong, the printer will print but it will be gibber

ish. To reset the baud rate, get into RUN mode and enter

BAU D number

"number" should be replaced by one of the numbers in the right-hand column:

for baud rate: use number:

300 180

600 87
1200 4 1
2400 18

42

Consult the manual for your printer to find what rate it wants. Once the rate is set, it

remains unchanged until reset by another BAU D command or until the computer is turned
off. When the computer is turned on, the baud rate is automatically set to 600.

Next, from BREAK mode, enter

P for single space

or a for double space

and the contents of memory will be printed. If for some reason you want to eliminate the line
feed at the end of any line (thus using a larger portion of the paper width) enter EDIT mode

and insert an @ character at the end of every line for which you want to eliminate the car

riage return and line feed. (To place an @ character in a line in EDIT mode, you'll need to

press the [@.] key twice.)

There remains the question of saving results, the pictures and/or text on the screen. One way
is to take pictures (this is the only way to get color if you don't have a Radio Shack Color

Printer). To avoid false patte
_
rns due to interactions of the camera shutter with the video

display we recommend a shutter speed of � second. Use a tripod and a cable release for the

camera. The lens setting is somewhat dependent on the brightness setting of the TV, and of

course on the film speed. A good starting point is to set medium brightness on the TV and use
a lens opening of about f8 with film speed of 100 ASA. The reds are likely to come out rather

brownish, and commercial developers are likely to overexpose prints with large dark back

grounds. However, the illustrations in this manual are typical of what can be done without
much trouble. You will minimize distortion if you use a telephoto lens.

The PRINTSCREEN command tells the computer to make a paper copy of whatever is on the

screen. The command can be abbreviated as PS. The command must be followed by a number

(or expression) with a value between 1 and 4. These numbers tell the computer what printer is

in use. Pick from the following table:

1 - RS DMP 1 10 single width; Line Printer 7

2 - RS DMP 1 10 double width

3 - RS Color Printer

colors: 0 - magenta

1 - yellow
2 - violet

3 - white

4 - RS Color Printer

colors: 0 - blue

1 - red
2 - green

3 - white

As with all uses of printers, the baud rate must be set correctly. See the instructions above.

43

The PRINTSCREEN command makes a copy of the screen dot by dot; it does not print letters

as units. It can take several minutes to print out the whole screen. However, you can interrupt

the process by holding down the I B R EAK I key. One caution: characters printed with the Color

Printer are not printed clearly; they have colored ghosts.

In text or list processing operations you may want the results printed at the same time they

appear on the screen. The ECH O command causes all characters displayed on the screen by
PRI NT, TEXT, and REQU EST commands to also be printed. If no printer is connected, then

the characters appear only on the screen. ECH O can be turned off with the NO ECH O

command.

44

11. RECURSION

In t he Super LOGO language, any procedure can call any procedure. When t he procedure calls

it self, we have a very powerful logical st ruct ure called recursion. One clever example of recur

sion was given by Hofst ader in his book Godel, Escher, Bach.

Hofst ader's Law: It always t akes longer t han you expect , even when you t ake int o
account Hofst ader's Law.

There are act ually t wo t ypes of recursion. We'll st art wit h t he easier one: recursion where t he

call is t he last st at ement of t he procedure. As usual, it is easiest t o look at examples. Recur
sion can be used in place of t he REPEAT st at ement .

TO CIRCLE

FD 1 LT 2

CIRCLE

EN D

When we run CI RCLE, t he t urt le moves forward one st ep and t urns. Then CIRCLE is called,

which causes t he t urt le t o move forward one st ep and t urn, et c. In principle t his process could
cont inue forever. However, every t ime a procedure is called some memory is used up. Even
t ually t he memory is all used up, and we get t he message

MY M EMORY IS TOO FULL

Try it .

So alt hough recursion can be used inst ead of REPEAT in some procedures, t here are some dis

advant ages t o doing t his. We have t o find some way of st opping t he comput er, or it will run

out of memory. There are also some great advant ages t o using t his t ype of recursion. The
following program appears in all LOGO books and manuals.

TO POLYSPI : SIZE : AN G L E : STEP

FD : SIZE

RT : AN G LE

POLYSPI (: SIZE + : STEP) : AN G LE

: STEP

EN D

This procedure is so much fun t o play wit h t hat we t hink you should do so before we get

involved in any explanat ions. One suggest ion before you st art : t he figures creat ed are l ikely t o
out grow t he screen long before t he memory runs out . The wrap-around feat ure of t he screen

will t hen lead t o some st riking but puzzling effect s. To st art wit h, let 's prevent wrap-around.

Ent er RUN mode and t ype

NOW RAP

45

Then try a variety of runs, for example

DRAW CLEAR

DRAW C LEAR

DRAW C LEAR

DRAW C L EAR

D RAW CLEAR

DRAW CLEAR

DRAW CLEAR

POL 'f S P I 1 1 4 4 •,

POLYSPI

POLYSPI

POLYSPI

POLYSPI

POLYSPI

POLYSPI

POLYSPI

1 90 1

1 90 5

1 120 3

1 1 22 3

1 144 5

1 145 1

1 176 3

If you then want to see what happens when the computer allows wrap-around, type

WRAP

and try some more runs.

Now let's try to figure out what is going on wi th thi s POLYSPI . It i s u seful to think of a

Super LOGO program in terms of levels: the main program is a procedu re at level 0, a
subprocedure called from level 0 is at level 1 , a su pprocedure called from level 1 is at

level 2, etc. The operation of a program like MANY can be diagrammed as follows:

L ev e l 0 (MANY)

Leve l (F OUR)

Leve l 2 (BOX)

46

etc.

The transitions down and up between levels 0 and 1 are controlled by the REPEAT statement
in MANY (down to level 1) and the EN D statement in FOU R (up to level 0). The transitions

down and up between levels 1 and 2 are controlled by the REPEAT 4 statement in FOU R

(down to level 2 four tim.es) and the EN D statement in BOX (up to level 1) . In a program like
POLYSPI the path is actually less complex.

Leve l 0 {PO LY S P I)

Leve l {POLYS P I)

Leve l 2 {PO LY S PI)

L eve l 3 (POLY S P I)

The transitions down are controlled by the statement

POLYSPI (: SIZE + : STEP) : AN G L E : STEP

There are no transitions back up because the procedure never reaches the EN D statement.
Thus the computer sinks down level after level until it finally runs out of memory. POLYSPI

gives interesting figures because of the difference in the values of the variables at the differ

ent levels. We begin the program with the command

POLYSPI 1 99 5 (Level 0)

The recursive call of the procedure is (when we substitute the current values of the variables)

POLYSPI 6 99 5 (Level 1)

Therefore at level 0 the F D command is for length 1 and at level 1 the F D command is for
length 6 . The pattern continues

POLYSPI 11 99 5

POLYSPI 16 99 5

(Level 2)

(Level 3)

until the turtle runs off the screen or the computer runs out of memory.

We now turn to the more complex type of recursion, recursion where returns to the higher

levels are actually made. Another popular program in turtle geometry is called TREE.

TO TREE : N

1 I F : N<2 (STOP)

2 FD : N

3 RT 15

4 TREE (3• : N/4)

5 LT 39

6 TREE (3• : N/4)

7 RT 15

8 BK : N

9 E N D

47

The line numbers are not part of the procedure; they are there for reference in our discussion
of the procedure. Enter this procedure (without the line numbers, of course) and try running it

with a value of 20 to 30 for : N . You might try making the numerical factors in the two calls
of TREE (lines 4 and 6 of the procedure) somewhat different, thus producing an asymmetrical

tree. You also could try changing the angles, but notice that the sum of the two right turns is

equal to the left turn.

Now let's try to understand the program. We have introduced two new ideas in line 1 . The

first is the conditional IF . The I F must be followed by an expression which has a truth value.

In TREE the expression is

: N < 2

If the current value of : N is less than 2, then this expression is true and the rest of the state

ment will be executed. If the current value of : N is 2 or greater, then this expression is false

and the rest of the statement will be skipped. The rest of the statement is placed in paren
theses; it may consist of many commands, and �t may extend over many lines. The second new

item in line 1 is the control statement STOP. The STOP statement ends a procedure. STOP

has the same effect as an E N D statement, but an EN D statement can appear only at the end
of a procedure.

It will be easier to understand TREE if we make some changes to simplify it. Change the
condition in line 1 to : N< 18, and change the right turns (lines 3 and 7) to 45 and the left

turn (line 5) to 90. Then run TREE 32 to get a simpler tree.

48

The following diagram and table outline the operation of TREE.

STEP

a
b

c

d

e

f
g

h

j
k
1

m

n

0

p

etc.

Leve I 0 : N = 32

Level : N = 24

Level 2 = N = I S

Leve l 3 = N = l 3

: N START

32 g

24 R45

18 R90
13 R135

18 R135

13 R45
18 R45

24 R90

18 g

13 R45

18 R45
13 L45

18 L45

24 g

32 R45
24 L45

END LINES

R45 1-4

R90 1-4

R135 1-4
R135 1

R45 5,6

R45 1
R90 7-9

g 5,6

R45 1 ,4
R45 1

L45 5,6
L45 1

g 7-9

R45 7-9

L45 5,6

g 1-4

49

First look at the diagram. The program tries to reach the lowest level of the procedure until
forced to rise in level by the STOP or the EN D statement. We can single-step the program by
running it as follows. In R U N mode type

TRACE TREE 32

Now every time you press I ENTER I , one command in the procedure will be executed.
For example, when you start, the first I ENTER I displays the call TREE 32 at the bottom of
the screen. The second I ENTER I executes the call and displays the next line, I F : N< 18

(STOP) at the bottom of the screen. The third I ENTER I checks the condition : N< 18 and
finds it false (remember we start with : N equal to 32). Therefore, the remainder of the line is
to be skipped (the STOP), so the next line, F D : N , is displayed. The fourth I ENTER I
executes FD : N (which you can see), and displays RT 45; the fifth I ENTER I executes
RT 45 (again visible), and the sixth I ENTER I executes the recursive call TREE (3• : N/4).

You can follow the table exactly, as long as you realize that the statement

I F : N< 18 (STOP)

is one statement if the condition is false, but two statements if the condition is true (execute
the STOP). A step in the table is counted as all the lines executed from when a level is
entered until the level is exited. A level can be exited in three ways: by a STOP or an EN D,

which completes the procedure at that level and goes up; or by a call of another procedure,
which leaves the current procedure incomplete and goes down.

Instead of giving an elaborate account in words of what is happening, we recommend that you
run the program using TRAC E and follow the table and the program in parallel. If you get
confused, start over and try again. Recursion is a little complex, but it is so powerful that it is
worth the effort to understand.

Incidentally, the recursive call TREE (3• : N/4) could be written TREE ((1.75•: N) just as
well. The first way is what is used with a system that only has integer arithmetic; the second
can be used with Super LOGO because it has two-decimal arithmetic. Two cautions if you use
the second: the zero before the decimal is essential, and eomputer arithmetic is never very
accurate in the last decimal (no problem in this example). You might think that the second
way would be faster (only one multiplication instead of a multiplication and a division), but it
isn't. Most of the time is taken up in the bookkeeping for the recursion and for drawing the
turtle many times.

The next program draws a figure which is called a fractal. A fractal is a figure which looks
the same no matter what magnification is used to view it (of course we are limited by the
screen resolution here). In this example we'll start with the basic shape:

__/_

50

The idea is that each of these four lines should be made up of that same shape. At one addi
tional level of detail that gives:

Each of the lines in this drawing is in turn made up of four lines with the basic shape, etc.
This is a place to use recursion.

TO FRACTAL : N

I F : N< 1 5 (FD : N STOP)

FRACTAL (: N/3)

LT 60

FRACTAL (: N/3)

RT 1 20

FRACTAL (: N/3)

LT 60

FRACTAL (: N/3)

EN D

Running FRACTAL 50 will show the pattern. (You may want to enter

DRAW RT 90 SX 0 FRACTAL 50

to turn it the way we've shown it in the manual.) Notice that the pattern divides the whole
length into thirds; that is why we divide by 3 on the recursive calls. However, the resulting
length will change somewhat depending on the conditional I F statement because of the round
off loss in arithmetic. You'll see that if you change the conditional to something finer such as
: N<4. That pattern looks like the edge of a snowflake. Why not make it into something
six-sided?

51

TO FLAKE : N

CLEAR

REPEAT 6 (FRACTAL : N RT sg)

EN D

You may have to play with the starting position CSX and SY) and the size to get a nice figure
without wrap-around. You may also prefer the figure you get when FLAKE is made to draw
three sides at 12'3 degrees.

Other variations are possible. We can replace F D : N in the I F statement with a more
elaborate series of commands. A few examples follow.

TO FLAKE : N

CLEAR

sx 5g

SY 4g

REPEAT 3 (FRACTAL : N RT 12g)

EN D

Replace the conditional statement in FRACTAL with

and try

52

I F : N < 9 (FD : N/4 RT sg

F D : N LT 1 6g F D : N

RT sg F D : N/4 STOP)

DRAW FLAKE 1 5g

Another variation is

and try

I F : N<9 (FD : N/4 RT 80

FD 2 • : N LT 160 FD 2• : N

RT 80 F D : N/4 STOP)

DRAW FLAKE 1 50

DRAW FLAKE 70

Recursion can be used to draw endless space-filling patterns. The following example is typical.

TO FOO : SIZE : LEVEL : PARITY

HT

IF : LEVEL = 0 (STOP)

LT : PARITY• 90

FOO : SIZE (: LEVEL-1)

(: PARITY• -1)

FD : SIZE

RT : PARITY•90

FOO : SIZE (: LEVEL-1) : PARITY

F D : SIZE

FOO : SIZE (: LEVEL-1) : PARITY

RT : PARITY•90

FD : SIZE

FOO : SIZE (: LEVEL-1)

(: PARITY• -1)

LT : PARITY•90

EN D

53

An appropriate set of numbers is

DRAW FOO 6 6 1

In this chapter we have tried to give you some ideas for recursive programs. However, we have
just scratched the surface of the designs that are possible. Go ahead and experiment, and let
others know if you discover any new, beautiful designs.

54

12. DOODLE MODE - PROCEDURES WITHOUT TYPING

Super LOGO provides a way to enter graphic procedures into the computer without typing the
turtle commands like FORWARD and RIG HT. The reason for including this feature is to pro
vide a way for children who are not ready to read or to type to use the language and to benefit
from the practice in structured thinking that the language offers. The features of DOODLE

mode are arranged with that audience i n mind. Obviously the children are not going to be
able to read the manual, so a parent or teacher will have to assist them in learning. In this
and the next chapter we will teach the assistant the mechanics of two ways to use Super
LOGO with children; actual suggestions for activities with the children are gathered together
in Chapter 14. In this chapter, we will cover the mechanics of DOODLE mode.

The idea of DOODLE mode is that a minimum set of turtle commands can be entered by
single keystrokes from the keyboard. Before proceeding, you should get the plastic overlay for
the keyboard which was supplied with the Super LOGO package. This overlay fits over the top
row of the keyboard. The symbols on the overlay show the meanings of the numeric keys in
DOODLE mode (see Appendix) . These symbols will appear at the bottom of the
screen in DOODLE mode when the keys are pressed, and they will appear in the procedures
that you create in DOODLE mode.

You can get into DOODLE mode by first getting into RUN mode, then pressing the [@] key.
When the [@] key is pressed, an = appears at the bottom of the screen. This is the indication
that it is time to name the procedure you are creating. Simply type the name you want to use;
the name can be as simple as a single letter or number. After typing the name, press
I ENTER I. The computer is now in DOODLE mode and the top row of keys has its
new meaning.

The meanings of the keys are

[I] CLEAR

[[) RT 45

[[] RT 15

� H O M E

[§] LT 45

[[] LT 15

[1] PEN U P

[I] F D 1

[!] PEN DOWN

[[) FD 1 9

Try each of the keys in turn. Of course [j] (CLEAR) will clear the screen, so you won't have
much time to see that one. Note the correspondence between the symbols on the keys, the
symbols on the bottom of the screen, and the action of the turtle.

Now that you have a bit of the idea of DOODLE mode, let's try to make something useful. To
get a fresh start, exit DOODLE mode by pressing I B R EAK I. This puts you in BREAK mode.
Clear the procedure space by pressing I SH I FT 11 CLEAR I . Get into the RUN mode (press [[])
and then get into the DOODLE mode (press [@]). The reason that we always get into the
DOODLE mode from RUN mode is that we may want to draw patterns on the screen in RUN
mode for the child to interact with or copy in DOODLE mode. Notice that the screen is not
cleared when we enter DOODLE mode. Now let's name the procedure we are creating "$" by
typing an [[] and pressing I ENTER I .

55

Begin by drawing a box using the top row of keys. When the box is completed, exit DOODLE
mode by pressing the I BREAK I key. Then get into the RUN mode and run the procedure [§] .
The only difference between this and the procedure we earlier called BOX is that S is a little
slower. To see that S actually exists as a procedure, get into EDIT mode and look at procedure
S. Notice that it is there with exactly the symbols used in its definition.

We can actually edit S in EDIT mode just as we edit any other procedure. For example, we can
add a diagonal to a box in several ways. First, we can add the type of turtle commands we are
already familiar with . For example, for a box with sides of length 40, we might use an RT 45

or RT 1 35 followed by an FD 61'a.

This shows that DOODLE mode turtle commands can be mixed with regular turtle commands.
However, in some sense, this way of editing defeats the purpose of DOODLE mode because the
child is not likely to be able to understand the change. To keep it understandable for the child,
we edit using the DOODLE mode symbols in EDIT mode. Each DOODLE mode symbol can be
made by pressing [@] followed by the appropriate key. Thus we could insert the above
instructions for a diagonal by the series of keystrokes

@ 5 @ 8 @ 8 @ 8 @ 8 @ 8 @ 8

That is, an RT 45 (@ 5) followed by six F D 1 0's (@ 8). Try it.

Obviously this kind of editing would be most useful in a cooperative project where the child
was using DOODLE mode and the helper was using EDIT mode. A more likely type of error
correction or editing is to make changes during the doodling process. For example, "I should
not have taken that last step forward; ' or "I should not have turned that far." To see how to
handle this, get into DOODLE mode C l B R EAK I, [BJ, [@]) and enter a new name, say B.

Now doodle out a box, but go one step too far on the last side. Left-arrow (backspace) will now
erase the last step in the procedure. Note that it does not erase the symbol for that step from
the list at the bottom of the screen. Try eliminating step after step by repeated use of the left
arrow key. The edited version of the procedure is stored in the memory in correct form and can
be seen in EDIT mode.

Another type of editing the child may wish to do is to add on to the end of a previous proce
dure. There is no simple way to do exactly that, but it is easy to produce the same effect. Get
into RUN mode and run the current version of the procedure. That will draw the shape on the
screen. Get into DOODLE mode and give a second name. Notice that the turtle is at the home
position instead of at the end of the shape. Start the new procedure with H O M E (key 2), raise
the pen (key 3), move to the end of the shape, and lower the pen (key 4). Now you are ready to
proceed with completing the shape. To get the whole shape while running, either run the two
procedures in sequence or, in EDIT mode, remove the EN D statement from the first procedure
and the TO name statement from the second procedure. If you do the latter, you can remove all
the turtle commands from H O M E to PEN DOWN at the start of the second procedure, as well .

Thus far we have limited ourselves to horizontal, vertical, and 45-degree lines. What about
other angles? Imagine a grid of squares with the turtle in a central one. If the turtle is going
to move one square forward, there are only eight adjacent squares to move into. Thus, with a
step forward of one unit the only angles which give consistent visible effects are 45 degrees

56

apart (0, 45, 90, . . .). In DOODLE mode, the only steps forward possible are one unit and ten
units. We've already said that the only turns that are useful with one unit forward are turns
which are multiples of 45 degrees. With ten units forward, turns as small as 5 degrees give
consistent visible results; but these seem too detailed (and require too many keystrokes) for
the typical DOODLE mode user. Therefore the smallest turns provided are multiples of 15
degrees.

If you want to make a line at some other angle in DOODLE mode, you can. It just requires
more keystrokes. The combination of FD 1 operations and either no turn or a turn of 45
degrees will allow the drawing of a line at any angle. For example, a very small angle could be
drawn by repeating this series the desired number of times: F D 1 Q (key 8) followed by nine
FD 1 's (key 7), an RT 45 (key 5), an FD 1 , and an LT 45 (key 6). This sounds awkward, but
remember that it will be necessary very seldom. Most young children will find sufficient
accuracy with turns of 15 and 45 degrees.

DOODLE mode characters are not available on printers. If you try to print a procedure created
in DOODLE mode, the special characters will appear as lowercase letters. Thus it is imprac
tical to print DOODLE mode procedures. Also notice that the @ character has a special mean
ing in EDIT mode. If you want to include an @ character in a line of a procedure to prevent a
line feed when printing, you must press @ twice.

57

13. ONE-KEY DOODLING

The idea of DOODLE mode can be extended to an open-ended set of single keystroke opera
tions if we give up the ability to store and edit the child's input as a procedure. This requires
a set of procedures which we hereafter refer to as the OK Set (One Key Set). To start we define
a set of procedures with single-character names. To call forth the desired action, the child
presses the single key and then presses I ENTER I . This is easier shown than described.

The first step is to define a set of procedures which match the individual keys in DOODLE
mode. Because we are not going to save or edit the procedures, we do not bother to draw the
special symbols at the bottom of the screen (although if there was some reason to have them
we could draw them with turtle commands). Clear the memory and enter the following
procedures.

TO 1 TO 2

CLEAR H O M E

E N D E N D

TO 3 TO 4

PU P D

EN D EN D

TO 5 TO 6

RT 45 LT 45

EN D EN D

TO 7 TO 8

F D 1 FD 1 0

E N D E N D

TO 9 TO '1

RT 1 5 LT 15

EN D EN D

This set of procedures will allow the child to move the turtle freely around the screen in RUN
mode using the keys he or she already knows from DOODLE mode.

The advantages of this approach become evident when we add to the list of procedures. The
following procedures are typical.

TO T

SH '1 HT P D FD 8

RT 15'1 FD 1 5

T R I 15

SH 3'15 FD 8 SH '1 PU ST

E N D

TO TRI : SI D E

I F : SI DE< 2 (STOP)

R EPEAT 3 (RT 12'1 FD : S IDE)

TRI (: S IDE - 2)

E N D

59

Note: The turtle pen is lowered at the beginning of each of these procedures and raised at
the end of each to prevent a trail being drawn while the child is positioning the turtle to
draw another shape. P D and PU can optionally be removed from these procedures.

T will draw a triangle. You might wonder why T is so elaborate; after all, we could use the fol
lowing to draw a triangle.

TO QUICKT

R EP EAT 3 (FD 15 RT 1 20)

E N D

The problem here i s that the orientation of a triangle drawn by OUICKT will depend on the
prior heading of the turtle. For the applications we have in mind we want all the triangles to
have one vertex pointing up (SH 0). We also want to color in the triangle and we want to draw
the triangle around the turtle's starting position. Therefore we use the procedure TRI and we
move forward eight units before starting the triangle; hiding the turtle gains speed. TRI uses
recursion to make a filled-in triangle. To get complete filling-in we must start at the correct
vertex of the triangle (this is not obvious, but is a consequence of the way in which the Color
Computer produces color in high resolution). Thus the line RT 150 FD 15 in T moves us to a
different vertex. You might try replacing this line with RT 30 to get a striped triangle, and
then make TRI read REPEAT 4 (RT 129 FD : SI DE) to get an even more interesting pattern.
The commands in T after TRI 15 return the turtle to the starting position with a heading of 0
degrees.

A similar set of procedures can be used to define a box and a circle.

TO B

SH 45 HT P D F D 1 0 RT 45

BOX 14

RT 135 FD 1 0 SH 0 PU ST

EN D

TO BOX : SI D E

I F : SI DE< 2 (STOP)

R EP EAT 4 (RT 90 FD : S IDE)

BOX (: SI DE -1)

E N D

TO C

SH 0 HT P D

REPEAT 6 0 (F D 8 BK 8 RT 6)

PU ST

EN D

All these procedures restore the turtle to its starting position. It is not always easy to compute
what moves are necessary to reach the original position. In T we did it by experiment. Run T

immediately upon entering RUN mode, so that the starting position for the turtle is at the
home (128,96) position. When the procedure has finished, enter the line

PRINT XCOR

60

This tells the computer to print out the x coordinate of the turtle position. Since we started at
home we want to end at home, which has an x coordinate of 128. Notice that the printing
occurs at the position of the turtle without moving the turtle. Therefore we can follow this
with the command

PRINT YCOR

t o see that we've returned to the correct vertical position a s well. O f course the procedure T is
correct; we showed you this in case you wanted to define procedures for other shapes as well.
From these values we could tell what changes would have to be made in the last line of T to
restore the turtle to the original (home) position.

With these procedures the child can move the turtle around the screen using the number keys,
and the child can produce triangles by entering T, boxes by entering B, and circles by enter
ing C. But, we hear you say, this is for children who don't know the letters. We suggest that
you cover the selected keys with small adhesive labels on which the symbols have been drawn.
In this example this would mean putting a label with a triangle on the T key, a label with a
box on the B key, and a label with a circle on the C key. Of course you could use any other
keys instead by renaming the procedures.

8
8
y

e

1

As in DOODLE mode, we want to have some way to erase mistakes. The way to do this is to
redraw the shape with the pencolor set to the background color. We also have to pick a way for
the child to control the erase. One possibility is to use double presses of the same key to
specify erase. With a minor name change, then, we have the procedures

TO T TO TT TO T1

PC 1 PC 3 SH 0 HT P D F D 8

T1 T1 RT 1 50 FD 15

EN D EN D TRI 15

SH 305 FD 8 SH 0 PU ST

EN D

Returning the turtle to its original position makes this erase possible.

61

Similar changes in B and C give

TO B TO B B

PC 2 PC 3

B1 B1

EN D E N D

TO C TO CC

PC � PC 3

C1 C1

E N D EN D

We have not bothered to reprint the original versions of C and B, which must be renamed C1
and B1 .

While we are at it, we should allow for double keystrokes of the DOODLE mode commands.
One example should be sufficient.

TO 77

PC 3 BK 1

EN D

We are in effect building a special language consisting of one-keystroke commands. Because of
the low frustration tolerance of the audience that we are building the special language for, it
is especially important to make the language "user-proof'. To do that we should define a
procedure for all the other keys on the keyboard. The procedures are

TO A

TO D

EN D

Note that we skipped B and C because they are actually used. Note also that it is not neces
sary to have individual EN D statements for each procedure because the following TO state
ment automatically ends each procedure. These procedures prevent the message

I DON'T KNOW H OW TO .. .

if the child accidentally enters an unlabeled key.

In this chapter we have introduced the idea of building shapes or complex picture elements
which the young child can call forth with single keystrokes. The examples we have given are
simple, but the only limit to what is possible is your time and imagination. Let's now start
thinking about ways to use these tools with very young children.

62

14. USE OF DOODLE MODE AND OK SET

In the last two chapters, we covered the operations of the DOODLE mode and the OK Set.
What is possible and what is worthwhile are two separate questions. In this chapter we will
pass along some suggestions for worthwhile activities. Our suggestions are aimed at the adult
who is working with small children. We have collected ideas from a number of sources. How
ever, we should make it clear that, because Super LOGO offers possibilities for working with
much younger children than could be reached previously, no one at this time really knows
what is possible or what is most beneficial. Also remember that this is a user's manual for a
computer language, not a textbook on early childhood education. Don't be hesitant to question
our suggestions, and don't hesitate to try out new ideas.

Perhaps the best way to start with very young children is to let them play. By "play," we mean
allow them to explore the effects of the various keys. If the children are very young, this will
take quite a bit of time. If you've changed the shapes available in the OK Set since the last
session, then you should give the child another chance to explore the new set of keys. Keep in
mind that a child's attention span is not as long as yours, so don't try to prolong the sessions.
Our own first ideas for Color LOGO grew from an effort to create something for a four-year-old
to do because he wanted to be like Dad and "work on the computer". This suggests that
another way to start is to master DOODLE mode yourself and to prepare a set of procedures
for the OK Set. Then you'll be ready when an interested face appears at your shoulder some
evening.

The users of LOGO have had consistent success with one technique for getting children
started. They repeatedly relate the turtle commands with body movement. That is, ask the
children to play turtle and ask them to keep track of the turtle movements they make. Thus, if
the task is to draw a box, the child is asked to walk in a box-shaped path and then to tell the
turtle what he or she did. The success on which this recommendation is based comes from
work with somewhat older children, so it may not be quite as effective with the pre-reading
group. It might help to give them objects to actually walk around to make the shape less
abstract .

One heavily used technique in early childhood teaching is to ask the student to copy some
thing. A book titled Mathematics Their Way by Mary Baratta-Lorton (Addison-Wesley Publish
ing Company, 1976) makes use of this technique for beginning mathematics and is a rich
source of ideas for DOODLE mode projects. Basically, the approach is to write a procedure
which will draw a figure or shape. This can be placed on the screen in RUN mode. The child is
then asked to copy, complete, fill in, invert, rotate, or in some way proceed with reference to
the figure on the screen. If the procedure the child develops while doing this is likely to be
worth keeping for future use, then the child should be working in DOODLE mode. If it is not
worth keeping, or if it requires the more complex shapes, then the child should be working
with the OK Set of procedures.

Let's turn now to some specific activities. A large number of exercises could be built around
the idea of pattern continuation and generalization. These activities are best suited to the OK
Set, so the following procedures should be added to that set. One of the simplest types is a pat
tern which can be imposed on a line of dots. First we draw two parallel lines of dots.

63

TO DOTS

C LEAR

H T RT 90

SX 5 SY 1 50

LI N E - OF - DOTS

SX 5 SY 50

L IN E - O F - DOTS

EN D

TO L IN E - O F - DOTS

R EP EAT 20 (BIG DOT FD 12)

E N D

TO BIG DOT

FD 1 P D RT 90 F D 1

REPEAT 4 (RT 90 F D 2)

PU

BK 1 LT 90 BK 1

EN D

We could have used the LOGO primitive DOT (a predefined LOGO command described on
page 172) instead of BIG DOT, but later on we'll want to be sure that the dot is centered on
the starting point. Note that we could not use the name DOT instead of BIG DOT for the
procedure, for the computer would use the primitive instead of the procedure.

Next we draw some very simple repeating pattern on the upper row of dots. We'll use DOTS in
the pattern drawing procedure. Several examples follow.

TO PATTERN1

DOTS

SX 5 SY 150

R EPEAT 1 0 (PD FD 1 2 PU

FD 1 2)

SX 5 SY 50 ST P D

EN D

Try running PATTERN1 . The idea is that the child is to reproduce the pattern of the upper
set of dots on the lower set, and then, after that is mastered, the child is to give an equivalent
pattern with some other shapes. Before you try this with a child, try it yourself! Try to copy
the pattern on the lower row of dots. You'll find that it is more difficult than necessary. It is
needlessly difficult to move the turtle the correct number of units (12 as the procedure is writ
ten). We can make the exercise much less bothersome by some minor adjustments. Notice that
these adjustments in no way detract from the point of the exercise, which is to recognize and
continue the pattern.

64

TO LI N E - OF - DOTS

R EPEAT 1 2 (BIG DOT F D 20)

E N D

The change to F D 20 means that the child can connect dots with two keystrokes (key [[]
producing FD 1 0 on each stroke). We have to adjust PATTERN1 as well.

TO PATTERN1

DOTS

SX 5 SY 150

R EPEAT 6 (PD FD 20 PU

FD 20)

SX 5 SY 50 ST P D

EN D

·-- - - - . - .. - ·--

CJ • • • • • • • • • •

You may be wondering why we didn't just give you the final versions immediately. The point is
that we hope you will try creating your own exercises, and we want you to see that a little
attention to detail can make the exercises much more effective. Be sure to try out the task to
check the difficulty level before the children are around. This is supposed to be fun as well as
instructive, not a new source of frustration.

The same pieces can be used for a slightly more difficult exercise.

PATTERN2

DOTS

SX 5 SY 1 50

R EPEAT 6 (PD LT 60 FD 40

RT 120 FD 40

LT 60)

SX 5 SY 55

LT 90 FD 1 0 RT 90 FD 40

RT 90 FD 1 0 BK 1 0 LT 90

ST

EN D

65

F
. . - - - - . - . -

Here the task is to reproduce the pattern by continuing the shapes started on the lower line.
Because the two shapes forming the pattern are different, the focus is on the shape rather
than straight copying.

We may as well make use of some of the fancier shapes that we have defined in the OK Set.
The following is another example of complete the pattern, but one which is visually more
interesting. (In order to run the following procedure, you'll need to have the final versions of
the procedures T, T1 , and TRI from Chapter 13 in program memory)

66

TO PATTERN3

MAKE "X 0 MAKE "Y 50

CLEAR HT

R EPEAT 1 0

(REPEAT 7 (SX : X SY : Y

SQUARE MAKE "Y : Y+ 20)

MAKE "X : X + 20 MAKE "Y 50)

MAKE "X 11 MAKE "Y 58

REPEAT 4

(REPEAT 5 (SX : X SY : Y

T MAKE "X : X + 40)

MAKE "X 11 MAKE "Y : Y+ 40)

SX 31 SY 158 ST

EN D

TO SQUAR E

R EP EAT 4 (FD 20 RT 90)

EN D

The child's task is to complete the pattern by moving the turtle and by pressing the key with
the triangle. Many other variations on this theme are possible.

The PATTERN3 procedure makes heavy use of the MAKE statement, and we have not dis
cussed that before. The MAKE statement changes the value in the memory space referred to
by the variable name following the MAKE to the value given by the next expression or num
ber. For example

MAKE "X : X + 40

replaces the starting value in the memory position named X (name X indicated by "X) with a
value which is 40 greater than the current value. Notice that LOGO distinguishes between
the name of the variable ("X) and the contents of the variable (: X). Not all versions of LOGO
make this distinction, so Super LOGO also accepts the syntax

MAKE : X : X + 40

Of course not all the tasks using the triangles, squares, and circles need to be directed towards
specific goals. Ask the child to create a design, or to create a border to the screen.

Another group of projects can be based on completion of design. The screen can be thought of
as consisting of four quadrants divided at the home position. The idea is to have the turtle
draw a pattern in one quadrant and to have the child complete the pattern in the other three
quadrants. Either DOODLE mode or the OK Set can be used here. If you've included the erase
procedures for the DOODLE turtle commands in the OK Set, then that set is preferable. A
simple pattern is

TO PATTERN4

CLEAR

RT 90

REPEAT 2 (FD 60 SX 128 SY 96

RT 45)

H O M E

E N D

67

We have written the procedure so that it is easy to add lines to make a more elaborate pat
tern. However, we recommend that you restrict the patterns to those using angles which are
easy to produce in DOODLE mode (that is, multiples of 15 or 45 degrees). We reset the turtle
to the home position with the SX and SY instead of with H O M E so that the turtle heading is
preserved. Again the FD should be some multiple of 10 to minimize the number of keystrokes
needed.

This gives a more complex pattern.

68

TO PATTERNS

CLEAR

LI N ES 60 128 1 Q

H O M E

EN D

TO L I N ES : LENGTH : X : STEP

IF : LENGTH = 0 (STOP)

SX : X SY 36 SH 0

F D : LENGTH RT 90 F D : LENGTH

LI N ES (: L ENGTH - : STEP)

(: X + : STEP) : STEP

EN D

The starting points for the p;;ittern are picked so as to center the pattern on the home position.
Thus because home is at 128 ,96 the starting point for the first line is at 128,36 which is 60
units below home. We've chosen to orient the pattern so that the child can begin drawing with
out turning the turtle.

At some point the child will need practice in learning letters and numbers. Part of learning to
recognize them is to look at them very carefully, and this can be encouraged by use of DOO
DLE mode activities. The child will probably want to use the letters later to write simple
words, so we'll save the procedures they make. The first tasks could be simply copying from a
model . Because most people identify computers with mathematics, here we'll counter that ten
dency by using letters for examples. We'll begin with the letter F. We need a procedure to draw
the model .

TO DRAWF

CLEAR

SX 50 SY 146 RT 180

FD 50

SX 50 SY 146 LT 90 FD 30

SX 50 SY 126 · FD 20

H O M E

EN D

This will draw a large capital F, as you can see by running the procedure. However, it will
draw the F so quickly that it gives the child no hint as to the order in which the lines should
be drawn. The order can be indicated in several ways. Color can be used (draw the red part,
then draw the blue part). We can put delays between the strokes to make the sequence on the
example visible. We'll use both techniques.

69

TO DRAWF

CLEAR

SX 50 SY 1 46 RT 180

PC 1 FD 50

WAIT 30

SX 50 SY 1 46 LT 90

PC 2 FD 30

WAIT 30

SX 50 SY 126 FD 20

WAIT 30

H O M E

EN D

Note: The DRAWF procedu re cou ld not be calle(l DRAW-F becau se LOGO command
words su ch as DRAW cannot be u sed as part of a hyphenated procedu re name.

1--- 0

The command WAIT does nothing bu t wait the indicated nu mber of tenths of a second; here it

waits 3 seconds each time. Be su re that the child' s procedu re is named F so that there is a

simple correspondence between the name and the drawing. If you still have the OK Set in
memory, you' l l have to delete F from that set.

Once the child is familiar with the shape of the letter, or of several letters, you can let the

child try making letters by connecting dots. Here the procedu re mu st draw the dots, preferably

starting at the home position. (To ru n the procedu re DOTM, you' ll need to have the BIG DOT

procedu re from Chapter 13 in program memory.)

70

TO DOTM

C LEAR

BIG DOT FD 60 BIG DOT RT 135

FD 30 LT 45 BIG DOT

LT 45 FD 30 RT 45

B IG DOT RT 90 FD 60 BIG DOT

H O M E

EN D

•

l)

In this procedure we've been careful to always have the turtle pointing in the horizontal direc
tion to keep the spacing of the dots perfectly regular. That may not be essential.

This dot-to-dot exercise works best for those letters and numbers where the pen never need be
raised. Most letters require that the pen be raised. The dot pattern for these may be a bit of a
puzzle, perhaps a worthwhile challenge. If that is too difficult, color coding the dots into two or
three sets or adding intermediate dots may help.

The ability to visualize how things will look in other positions is worth developing. The idea
here is to give a figure in one position and to ask the child to doodle it in another position. We
are going to reuse the child's procedure for final comparison, so here we use DOODLE mode.
One task is to ask the child to complete a partially drawn figure, but in another position.

TO PATTERNS

RT 180

SX 70 FD 50 RT 90 FD 20 RT 90

FD 20 LT 90 FD 1 0 RT 90 FD 1 0

LT 90 F D 1 0 LT 90 F D 1 0 RT 90

FD 1 0 LT 90 FD 20 RT 90 FD 20

RT 90 FD 50 RT 90 F D 70

SX 198 SY 96 SH 180

FD 50 RT 90 F D 70 RT 90 FD 50

E N D

71

lJ

Remember that in entering DOODLE mode it will be necessary to name the procedure that
the child is creating. The comparison of the two figures can be made nicely. Let's assume that
the child's procedure is named ZZ. After ZZ is completed, get into RUN mode and do the
following.

RT 180 PATTERN6

SX 70 SY 146 PC 2 ZZ

This will rotate the original figure and draw the child's figure over the rotated original in
another color. The result will be even more satisfying when the child is drawing the whole fig
ure in the new position. Of course the above set of instructions could be combined into another
procedure so as to speed the comparison.

The DOODLE mode projects can become quite complex. For example, a long DOODLE mode
project could be teaching the turtle to write in handwriting. The key is to name each proce
dure for drawing a cursive letter with that single letter as the name. Thus, cursive a should be
given the procedure name A, cursive b the procedure name B, etc. Then in RUN mode every
time a letter is typed (followed by I ENTER b the cursive letter will be drawn. Or one could de
fine a procedure with a word spelled out (spaces between the letters) and the result would be
the word in cursive letters.

TO CU RSIVE

C A T

EN D

will write "cat" in cursive if the procedures C, A, and T are correctly defined. To make it all
work smoothly, the turtle will have to end up in the right position after each letter.

If that is not enough of a challenge, then how about making the computer draw letters as they
appear in a manual on calligraphy? No doubt you will have to make them a bit bigger to get
the desired effect. The only limitation is that you can't have both upper and lower case letters
at once. There are limits, even with Super LOGO!

72

This chapter has given some idea of what can be done with the OK Set and DOODLE mode.
At this point there are several ways you might continue with a child. One is to continue with
DOODLE mode giving them ever more challenging tasks or encouraging them to create useful
procedures which you help them use in RUN mode. If they are reasonably good with the key
board, they may not need much help. An alternative is to teach them how to extend the OK
Set by adding procedures they create in DOODLE mode (they can make their own key labels
and attach them as they name the procedures).

For example, you could suggest that they draw a truck, a house, a tree, and a person in DOO
DLE mode, and then let them draw street scenes using these additions to the OK Set. Of
course they'll soon want to add color. To do that they'll have to learn how to insert PC com
mands into their procedures, and before long they'll be typing and editing in the standard way.

73

15. ADDITIONAL EDITING FEATURES

There are some additional features of the editor which are useful when we have longer sets of
procedures to edit. We'll introduce them in this chapter.

There is a way to delete more than one character at a time. When you are in EDIT mode,
I SHIFT 1 1 CLEAR I (that is, holding down the I SHIFT I key and pressing the I CLEAR I key)
deletes from the current cursor position to the end of the line. If the cursor is at the left mar
gin, this operation deletes the whole line. Before you try this, make absolutely certain that
you are in EDIT mode because these same keys clear memory (delete all lines) in BREAK
mode.

The I SHIFT I rn combination initiates one of several fast-forward sequences. The first
response to the combination is that the cursor is moved to the bottom of the screen. At this
point, the computer waits for additional input from the keyboard. This input can be of three
types.

One possibility is to enter the I SH I FT I rn combination a second time. This causes the text
lines to scroll up until the process is interrupted or until the end of the procedures in memory
is reached. You can interrupt the process by pressing any key.

A second possibility is to enter up to 16 characters. This string of 16 characters becomes a
search string. That is, the computer searches through the procedures in memory, starting from
the current cursor position, for an occurrence of the search string. If a copy of the search
string is found, the search is stopped at that point. Otherwise, the search continues to the end
of the set of procedures in memory. This possibility can be used to locate errors (for example,
mistyped procedure names), or simply to skip ahead to a known procedure name.

The third possibility is to press I ENTER I. This tells the computer to reuse the previous search
string and to look for its next occurrence. This process can be repeated as often as desired.
Notice that if you press I ENTER I after the first time you use the I SHIFT I rn combination,
you are telling the computer to search again for no characters, which it will find immediately.
This sounds silly, but it is easy to press I ENTER I inadvertently, especially when nothing
seems to be happening.

To make sure that you know how to make use of this very useful feature, we'll give a specific
example. We'll assume that you saved the procedures from last chapter and that you want to
locate all occurrences of the procedure named BIG DOT. With the procedures in memory, get
into the EDIT mode and enter

ISH IFT I DJ BIG DOT I ENTER I

Remember I SH I FT I rn means two keys, and I ENTER I means one key. The computer will
scan down through the procedures until it finds BIG DOT. To find the next one, enter

1sH 1 FT 1 rn 1 ENTER 1

Again the computer scans until it finds BIG DOT a second time. To search for the third
occurrence, enter I SH I FT I rn I ENTER I

and so on. A complete list of operations available m EDIT mode is contained m the
EDIT mode section of Appendix I.

75

16. MULTIPLE TURTLES

So far we have been drawing on the screen with a single turtle. Complex figures were made by
drawing one piece at a time, first one piece completely, then a second piece, and so on, until
the drawing was complete. In Super LOGO there is another way to produce a complex draw
ing. We can draw all the parts at once using several turtles.

Multiple turtles provide many possibilities. Games are one obvious application. It is much
easier to program games if each player is assigned a turtle which maintains its position until
that player's next turn. In other applications we can make drawings by assigning to turtles
the tasks of drawing individual pieces of the whole. In this way the drawing will seem to
evolve instead of appearing piecemeal. At a more serious and abstract level, we can use the
multiple turtles to illustate the process of multiprogramming.

Let's begin by entering a few procedures for the turtles to run. Clear the memory and enter

TO BOX : SI DE : X : Y

SX : X SY : Y

REPEAT 4 (FD : SI D E RT 90)

EN D

TO CIRCLE : SI D E : X : Y

SX : X SY : Y

REPEAT 20 (FD : SI DE RT 18)

EN D

Run each of these to verify that they are entered correctly.

We create new turtles by means of the HATCH command. The form of the command is

HATCH turtle-number procedure-for-the-turtle

or, to give a specific example of the format,

HATCH 1 BOX 50 30 60

(HATCH needs to be used inside a "procedure, so don't try out the command just yet, or the
command will be ignored.) Here the meaning of HATCH is obvious. The first number, here 1,

is the name or label of the turtle. Turtles can be labeled with any number between 1 and 254.
(Turtle (:J is the master turtle - always present, even if hidden by a HT command - which we
have been using exclusively up to now.) BOX is the name of the procedure which we are tell
ing turtle 1 to run. The numbers following BOX are, as usual, the values to be fed into the
local variables within BOX.

Next we try out a simple multiple turtle program. Enter the following

TO TEST1

HATCH 1 BOX 50 30 60

HATCH 2 BOX 40 180 90

HATCH 3 BOX 60 1 00 90

EN D

77

Notice that each turtle has its own procedure and its own set of values for the variables. Of
course, several turtles can be using the same procedure, but each still has its own current set
of values for the variables.

When you run TEST1 you may get less than you expected. Why does the program stop before
drawing the boxes? Notice that there are four turtles on the screen: the three you created with
the HATCH commands, and as always, the master turtle. When there are multiple turtles,
Super LOGO gives each turtle a turn in sequence. A turn is a single turtle command or a logi
cal operation in a control statement. (A control statement is one which controls the sequence
of operations in the procedure, for example an I F or a REPEAT.) Turtle 0 uses a turn
to create turtle 1, and then the computer gives turtle 1 a turn. Next it is turtle 0's turn again
and it creates turtle 2; then the computer gives turtles 1 and 2 each a turn. Next turtle 0 uses
its turn to create turtle 3, and the computer gives turtles 1, 2, and 3 each a turn. Again it is
turtle 0's turn and it encounters the EN D. Turtl� 0 is now waiting for something to do. We
have not given turtle 0 anything else to do, so it is waiting for a command from the keyboard.
If we press I ENTER I (a command for turtle 0 to do nothing), then all the other turtles get
another turn. Try it.

Of course we do not always want to have to sit at the keyboard pressing I ENTER I . We can get
the whole thing to work as planned if we give turtle 0 some procedure to run as well . Try

TO TEST1

HATCH 1 BOX 50 30 60

HATCH 2 BOX 40 180 40

HATCH 3 BOX 60 1 00 20

BOX 20 1 50 120

EN D

The last call of BOX has no HATCH preceding, so it is addressed to turtle 0. That's more like
it! If you want to see in a bit more detail what is actually happening, you might want to slow
down the speed. You can slow any procedure by inserting a SLOW command.

TO TEST1

SLOW 30

HATCH 1 BOX 50 30 60

HATCH 2 BOX 40 180 40

HATCH 3 BOX 60 1 00 20

BOX 20 1 50 1 20

EN D

The number after SLOW tells the computer how much to slow down. The number must be
between 0 and 127. Zero is full speed and 127 is the slowest speed. The SLOW command sets
a speed for all procedures which will remain unchanged until reset with another SLOW com
mand or until RUN mode is exited and then reentered. TRACE is not as useful here because
it is not always obvious which turtle is running the line displayed at the bottom of the screen.

Before we leave this example, notice that at the completion of each turtle's procedure the tur
tle disappears so that at the end only turtle 0 remains.

78

Of course we can use different procedures for the various turtles. Try

TO TEST2

HATCH 1 BOX 5'6 3'6 6'6

HATCH 2 BOX 4'6 18'6 90

H ATCH 3 BOX 60 1 00 20

HATCH 4 C I RCLE 3 30 140

HATCH 5 CIRCLE 4 180 1 20

CIRCLE 5 90 90

E N D

This procedure can be used to point out one potentially troublesome point. What i f we altered
the procedure by making the procedure for turtle @ BOX (say BOX 8'6 90 90)? If you try this,
you will find that the circles are not completed and that the two turtles drawing the circles
remain on the screen. This is because turtle @ runs out of commands before the others are fin
ished. To avoid the problem, always put the procedure for turtle @ last, and assign turtle @ the
most complex procedure.

An6ther solution to the problem mentioned above is contained in the procedure ABSTRACT.

TO ABSTRACT

CLEAR DRAW COLORS ET 1
RT 25

HATCH 1 PATH 1 4 30

RT 43

HATCH 2 PATH 2 4 20

RT 67

HATCH 3 PATH 3 4 40

RT 1 05

HATCH 4 PATH 0 4 rn
VAN ISH

E N D

Notice the RT commands to turn turtle @ between each HATC H . The initial position and
heading of each new turtle is the same as that of the parent turtle (the turtle which hatches
the new one). In this example turtle @ is the parent, so each new turtle will have the position
and heading of turtle @ at the time of HATCHing. After the four new turtles are created, then
turtle @ is given the VAN ISH command. The VAN ISH command tells a turtle to go out of ex
istence. Once turtle @ is out of existence, it no longer gets a turn, and it cannot bring the
procedure to a halt by running out of commands.

79

Of course, the procedure ABSTRACT needs PATH to function.

TO PATH : CO LOR : I : L

HT PC : COLOR

W H I LE 1 =1

(FD : L RT 90 PU F D : I

RT 90 P D FD : L

LT 90 PU FD : I LT 90 P D

I F N EAR 255 > 150

)

EN D

(RT 1 08)

PATH contains some new ideas which we should explain. The first is the W H I LE statement.
The W H I LE is somewhat like a R EP EAT, but with a condition. The most common use is to
repeat while some condition is true (for example, W H I LE : X < 3). The computer evaluates
the condition and returns the value zero if the condition is false or a non-zero value if the con
dition is true. Here we want it to repeat forever, so we assign the condition 1 = 1 which
always is true. The parentheses following the W H I L E enclose the commands which are to be
repeated. The other new idea is the use of the N EAR function. The N EAR function returns
an indication of the distance from the current turtle to the designated turtle. Actually, what
you get is the total of the steps in the x direction and in the y direction to the designated tur
tle. In PATH the statement is

I F N EAR 255 > 150 (RT 1 08)

The current turtle (remember 1 , 2 , 3, or 4) is asking the distance to turtle 255. But turtle 255
does not exist. When you request the distance to a non-existent turtle, you get the distance to
the home position. Therefore this statement says, if the current turtle is more than 150 steps
away from home, then turn right 108 degrees.

After such a long explanation, we should get a program which runs a long time. ABSTRACT

will surely fit the bill; it will run until you hit the I B R EAK I key or until there is a power
failure.

80

Perhaps you'd like a different design.

TO MIXIT

DRAW COLORSET 1 BG 0

HATCH 1 SWEEP 1 3 60 30 0

HATCH 2 SWEEP 2 3 60 1 60 90

HATCH 3 SWEEP 3 3 190 160 180

HATCH 4 SWEEP 2 3 1 90 30 270

VAN ISH

E N D

TO SWEEP : COL : I NT : X : Y : H

R EPEAT 12

(HT PC : COL

)

SX : X SY : Y SH : H

R EP EAT 92 / : INT

(PD F D 1 00 PU BK 1 00

RT : INT)

MAKE "COL : CO L + 1

E N D

There i s no question that the turtles slow down as the number of turtles on the screen
increases. After all, more is going on. Thus far we haven't had so many that the slowing is
that noticeable. But how about a program which generates a lot of turtles? One interesting
test is to return to a recursion program and implement it using multiple turtles. TREE1 is an
ideal example. Try the following.

81

TO TREE1 : S

I F M E = 0 (CLEAR DRAW SETY 0)

I F :S> 6

E N D

(FD : S LT 30

HATCH 1 TREE1 (3• : S/4)

RT 60

HATCH 2 TREE1 (3• : S/4)

VAN ISH

)

TREE1 40 is an example that gives good results.

NOTE: Depending on the computer you are using, the TREE1 procedure may cause you
to run out of memory. You may see a partially drawn tree; or the procedure may termi
nate before the turtles are erased, giving the effect of a tree in full bloom. If that hap
pens, try it again with a smaller number (for example, TREE 30) .

Again we've introduced a new idea with this procedure, here the ME function. The ME func
tion returns the identification number of the current turtle. The statement

I F M E = 0 (CLEAR DRAW SETY 0)

says if the current turtle is turtle 0, then clear the screen, use the full screen, and move.
Because turtle 0 is subsequently told to VAN ISH, this will happen only once. This procedure
recursively hatches new turtles, all named either 1 or 2. Because the recursive calls keep
levels distinct, this is satisfactory, but functions like N EAR would give unpredictable results
because the various turtles are not uniquely named.

82

There are a nu mber of interesting things that can be tried with this procedu re. One is to

compare it in speed with the earlier version of TREE. In one case you have all the backing u p

necessary for a pu re recu rsive program, and in the other you have the overhead necessary to

keep track of all the tu rtles. To make the comparison meaningfu l you 'll have to make the two

versions draw the same size tree, bu t by now that will be easy. The comparison may give some
idea of why mu ltiprogramming is worth learning abou t. You can speed the mu ltiple-tu rtle

version by redu cing the nu mber of times the tu rtle has to be drawn. Simply insert a HT

command as the fi rst command in the procedu re. One other change converts the tree into fu ll
blossom. Try

TO TREE2 : S

I F M E = 0 (CLEAR DRAW SY 0)

I F : S> 6

(F D : S LT 30

HATCH 1 TREE2 (3• : S/4)

RT 60

HATCH 2 TREE2 (3• : S/4)

VAN ISH)

ELSE (REPEAT 500 ())

EN D

The addition is the ELSE statement. The ELSE is a partner of the I F statement. The combi

nation says if the cu rrent valu e of : S is greater than 6 then obey the commands in the follow

ing set of parentheses (from FD : S throu gh VAN ISH), bu t if : S is not greater than 6 then

obey the commands in the parentheses following ELSE. The commands following ELSE sim

ply delay the completion of the procedu re so that we can see the tree with a tu rtle at the end
of each branch.

Trees are so easy to draw with mu ltiple tu rtles that we may as well draw a complete forest. In

fact we'll look at two forests, one a decidu ou s forest in winter and the other an evergreen for
est in whatever season you like.

TO FIR1 : N : X : Y

H T SX : X SY : Y PC 0

BK : N/2 RT 90 F D : N/4

LT SO F D 6 + : N/2 RT 90

F IR11 : N : X

E N D

TO F IR11 : N : X

PC 1 RT 1 5 F D : N

LT 1 29 FD 3• : N

WHILE XLOC M E> : X (FD 2)

E N D

TO FI R2 : N : X : Y

HT SX : X SY : Y PC 0

BK : N/2 LT 90 F D : N/4

RT 90 F D 6 + : N/2 LT 90

FI R22 : N : X

EN D
83

84

TO FI R22 : N : X

PC 1 LT 1 5 FD : N

RT 129 F D 3• : N

WHILE XLOC M E< : X (FD 2)

EN D

TO F IR : N : X : Y : T

HT

HATCH :T FI R1 : N : X : Y

HATCH : T+ 1 FIR2 : N : X : Y

I F : N>29 (STOP)

FI R (: N + 1) : X : Y : T

EN D

TO EVERG R EEN : TR EES

DRAW HT

WHILE : TR EES > 9 (

MAKE "X RAN DOM 299 + 29

MAKE "Y RAN DOM 1 99 + 39

MAKE "T : TREES • 3

HATC H : T F IR 2 : X : Y : T

REPEAT 3 9 ()

MAKE "TR EES : TREES - 1)

VAN ISH

EN D

l[VCllGR IE IE M 5

Try running this set of procedures, first with one tree (EVERGREEN 1) and then with
several (EVERGREEN 4 or EVERGREEN 5). With some TV sets you may be able to get
green tops and brown trunks, so try playing with the color adjustment knobs. If not, you can
always claim that they're intended to be blue spruce. There are a couple of new ideas in the
last two procedures. In Fl R11 we have used the XLOC function. This returns the x screen coor
dinate of the designated turtle. Here : X is the starting point for the right half of the tree.
When XLOC has returned to the starting point, the procedure is finished. In FIR notice the
use of the variable : T to indicate the turtle number. In EVERGREEN we have introduced the
RAN DOM function. RAN DOM produces a random integer between 0 and the argument -1 .
For example

RANDOM 299 + 29

adds 20 to a random number between 0 and 199. The result must be a number between 20
and 2 19. We do this to keep the trees away from the edge where the wrap-around will give
some rather lopsided trees. Also note the use of WHILE in combination with the

MAKE "TREES : TREES -1

This gives a number which is one less every time through the WHILE loop. : TREES is used
to vary the turtle numbers for each tree drawn.

The deciduous forest uses the TREE1 procedure from page 82. Tu that we must add

TO FOREST
DRAW BACKG RO U N D 1
sx 236
REPEAT 3 (SY 1 9

SX XLOC M E + 49
HATCH 1 TREE1 29
SX XLOC ME + 49
HATCH 2 TREE1 39)

CLO U DS
END

TO CLO U D : SIZE : X
SETH EADING 99
REPEAT (: SIZE/6)

EN D

(MAKE "X RAN DOM (: SIZE/2)
PU FD : X/2 P D
FD : SIZE - : X P U
BK : SIZE - : X/2
SY YLOC ME - 2)

85

TO CLO U DS

PC 2 SX 1 0 SY 180

C LO U D 60

SX 1 00 SY 164

C LO U D 30

SX 190 SY 176

C LO U D 65

E N D

Again i n this example we have created many turtles with the same numbers by hatching
them recursively. The two multiple tree drawings show the two ways in which multiple turtles
can be created. It makes no difference which way you do it unless you are going to refer to the
turtle by number. In that case, each turtle must have a unique number.

Notice the statement

SX XLOC M E + 40

This has the meaning

SX (XLOC M E) + 40

not

SX XLOC (M E + 40)

Now that you are working on complex sets of procedures, you may want to interrupt the com
puter and pause at various times during execution, especially when you are testing. While
procedures are actually running, pressing the I B R EAK I key produces a pause. You can return
to I B R EAK I mode by pressing I B R EAK I a second time, or you can continue execution of the
procedures by pressing any other key.

86

17. NEW SHAPES FOR TURTLES

All turtles are created equal; at least they all look the same. In the examples we have seen so
far, that didn't matter. But often we want the different turtles to look different. For instance, it
would be impossible to play many games if all the pieces or players looked the same. So Super
LOGO includes a way to change the shape of individual turtles. As we shall see, this gives us
a bonus: a way to do simple animation.

The shape of the turtle is changed by means of the SHAPE statement. Following the word
SHAPE is a list of turtle shape commands. Turtle shapes are drawn using a very limited set
of turtle graphic commands, basically forward and back a single step, right or left by 45
degrees, and penup and pendown. The commands in a SHAPE statement have absolutely no
effect on the turtle position, heading, or pen state. The symbols used for these commands are
listed in the following table.

TURTLE SHAPE COMMANI) EFFECT

F Step forward one dot. If the pen is down, complement (reverse
the color of) the dot.

B Step backward one dot. If the pen is down, complement the
dot.

R Turn right 45 degrees.

L Turn left 45 degrees.

U Pick up the turtle shape pen. This pen is always down at the
start of a SHAPE command. The turtle shape pen is com
pletely independent of the standard turtle pen; PU and P D

commands have no effect on the turtle shape pen, and U and
D have no effect on the turtle pen.

D Put the turtle shape pen down. If the turtle shape pen was up,
then putting it down will cause the current dot to be
complemented.

Notice that because the only move forward or back possible is one dot, then the smallest turn
which makes sense is a 45 degree turn.

This will be clearer if we give an example. Let us assume that the current orientation of the
turtle is heading straight up. Then the command

SHAPE U R R FFFLLDFFFFL

FFFLLFFFLFFFF

will draw the following turtle shape.

87

Notice that the turtle shape commands can extend over more than a single line. Multiple lines
must be connected with a hyphen and must start in column 1. This, in turn, means that there
is no limit on the size or complexity of a turtle shape. However, the turtle shape must be
redrawn every time the turtle moves, so the larger and more complex the turtle shape, the
slower the system will run.

It is fairly difficult to create desired turtle shapes by trial and error at the keyboard. It is
especially difficult to locate an error in the middle of a string of turtle shape commands. We
have found the following to be effective ways to proceed. First design the turtle shape on a
piece of graph or engineering paper. The possibility of rotating the paper as you enter the
shape may save you from getting a stiff neck trying to play turtle at the keyboard. Once the
shape is designed on the graph paper, there are two methods which we use. If the turtle shape
is a simple one, enter the shape in DOODLE mode. Remember that the keys � ' [!] , [§] , [ID ,
and [I] correspond exactly to the turtle shape commands U , D , R , L, and F . Only B is missing,
and while B is very useful , it is not essential. Use of DOODLE mode continually shows you
the current heading, which is a big help. However, the turtle drawn in DOODLE mode will not
look exactly like the final turtle for several reasons. Lines drawn in DOODLE mode are two
dots wide, but lines drawn as turtle shapes are one dot wide. Also, lines which cross, comple
ment when they are turtle shapes. Lines which cross in DOODLE mode do not complement.
However, you will get to see the shape in about the final form and of exactly the final size
while drawing it. Once you have the shape completed in DOODLE mode, you can enter EDIT
mode and convert the procedure into one to draw the new shape. Simply insert the SHAPE

command before the command list and convert each 3 to U , each 4 to D, each 5 to R, each 6

to L, and each 7 to F, all by overtyping. (Of course, you will be converting the corresponding
DOODLE mode symbols, not the numbers 3-7.)

Let's begin with a very simple example. We want the turtle to appear as an arrow. On graph
paper we draw the dot pattern.

88

The actual turtle position is to be at the tail end of the arrows. Get into DOODLE mode, name
the procedure N EW, and draw the figure. The keystrokes are

777777766677555537755747

You may be surprised at the small size of the turtle, but you can always draw a new one after
you've learned the technique. Now enter EDIT mode and look at N EW. Insert SHAPE before
the list of symbols and replace the DOODLE symbols with the appropriate turtle shape com
mands. Don't forget to include the hyphen at the end of the first line of commands. At this
point your procedure should be

TO N EW

SHAPE FFFFFFFLLLFFR R R R

U FFRRFDF

EN D

(Remember that lines which continue a SHAPE command cannot be indented.) To see how
your shape looks, run N EW and then enter commands like F D 20 and RT 90. In Super
LOGO, the standard turtle can be drawn in 360 positions, but a turtle made with the
"SHAPE" command has only 8 positions (heading up, down, left, right, or in one of four
diagonal positions). Be sure to try the diagonal positions (for example, RT 45) because there
will be some change in shape as the turtle rotates to these positions. To see why that is so,
return to the graph paper and follow your turtle instructions beginning along a diagonal. It is
a good idea to do this on graph paper before going to the computer, as your turtle shapes
might come apart upon rotation if they are drawn in the wrong sequence. To show you that it
can happen, try the following. We could have drawn essentially the same shape by the steps

FFFFFRRU FFDLLLFFLLFF

i n the vertical or horizontal positions, but i n the diagonal positions this pattern comes apart,
as you can see if you follow the instructions on graph paper.

Now we move to a bit more complex example, an outline of a plane. The dot pattern is

x
x

x

x x x x x x � � x x x x x x
x x

x x x x x x� �x x x x x x

� � x x x � �

89

and the procedure created in DOODLE mode and translated to EDIT mode is

TO PLAN E

SHAPE RR FFFLLFLLFRFR

FFFFFFRRFFFFFF F

LFLLFLFFFFFFF R R F

FLFLLFLFFRRFFFF

FFFLFLLFLFFFFFF

FRRFFFFFFRFRFLL-

FLLFF

EN D

When we go to more complex shapes, we prefer to work with paper rather than with DOODLE
mode. There are several reasons for this. One is that the B command is very useful . The other
is that we must be very careful if we are to avoid·problems when the turtle shape is turned to
the 45 degree positions. As is our custom we will illustrate with an example. We want to use
the following stick figure as a turtle shape.

I .

We must choose our pathway through the figure carefully. The problem points are points
where lines meet. To avoid problems, we avoid shortcuts and return to junction points by
backtracking exactly. The pathway we take is indicated on the second figure. The dotted lines
indicate backtracking with the pen raised. Remember, if we did not raise the pen when back
tracking, then the lines would be complemented a second time (that is, erased). The only place
where we don't backtrack is on the head. If a closed figure is symmetrical, then it will stay
closed when rotated.

90

The other point to note carefully is when to raise and lower the pen. A dot will be comple
mented if the pen is down when we move into the dot or if the pen is lowered while we are in
the dot. Notice that this means that if we draw a line and then cross that line with the pen
down, the crossing dot will be erased.

Following the pathway indicated gives the following procedure. As stated earlier, we work this
out on paper and enter it directly in EDIT mode so that we can use the B command.

TO O N E

SHAPE LLU LLFFFFDFFRRR FFFFFF

RRFFFFFFLLFFU BBLLFFFFFFRFD

FFFFFFFFRR FFFFLFFU B B R B B B B

R FDFFFLLFFU B B LLFFFFRFD

FFLFRFFRFRFFRFRFFRFR F

EN D

Try this out by running O N E. Try rotating it to other positions. Notice that when you turn it
far enough it is upside down. You may not want turtles that do strange things like that for
some purposes. You can sometimes avoid it, if it is a problem, by shifting your point of view.
For example you might decide that it would be nice to have a turtle which actually looked like
a turtle. If you draw a side view of the turtle, then it will look strange with headings like 180
degrees. But if you draw a top view of the turtle, then it looks fine in any orientation.

The reason that we drew the stick figure is that we want to show you how to use Super LOGO
to do some very simple animation. We want to have a figure that will walk. We'll need another
position for the stick figure, so we define another turtle shape. The process is the same as
before.

91

Translating the indicated path into a procedure gives

TO TWO

SHAPE L LU RRFFDBBLLFFFFFFR RR

FFFRRRFFFFLFFU BB R B B B B R FFFRFD

FFFFFFFFFR RRFFFFLLFF

U B BLLFFFFLLFDFFFLLFU

BLLFFFFLFDFLFRFFRFR

FFRFRFFRFRF

END

Now that we have the shapes, we can have some fun. First let's make them walk.

TO WALK

HT PU SX 1 00 RT 90

R EPEAT 1 00 (O N E ST WAITA 1 00

HT F D 6 TWO ST

WAITA 1 00 HT F D 6)

EN D

TO WAITA : T

R EP EAT : T ()

EN D

Notice that in this case we want the turtle shape to be drawn at right angles to the turtle
motion. That is taken care of in the SHAPE statement. Notice also that we have to slow down
the process by including the WAITA procedure. Otherwise it runs so fast that we have trouble
seeing the shape. Try other values for : T to vary the speed. We can make the figure climb; just
enter LT 15 before running WALK again. We can even make the figure walk in a circle.

92

TO WALK - AROU N D

DRAW H T P U SX 1 00 RT 90

REPEAT 1 00 (ON E ST WAITA 1 00

HT RT 15 F D 6

TWO ST WAITA 1 00

HT RT 15 F D 6)

E N D

You may prefer the motion you get with a different control procedure. Try this as a n alterna
tive to WALK.

TO WALK1

HT PU SX 1 00 RT 90

REPEAT 1 00

EN D

(HATCH 1 WALKA

REPEAT 8 ()

H T F D 6

HATCH 1 WALKB

REPEAT 8 ()

H T F D 6

)

TO WALKA

HT O N E ST

REPEAT 1 0 ()

E N D

TO WALKB

HT TWO ST

REPEAT 1 0 ()

EN D

The trick here is to get the delays (that is, the R EP EATS with empty parentheses) synchro
nized. The delays in WALK1 must match with the delays in WALKA and WAL KB. If there is
a mismatch one direction, the two figures will appear together; and if there is a mismatch the
other way, the motion will be unnecessarily jerky.

After all this talk about turtles, we feel an obligation to actually draw something which looks
a bit like a turtle. As our next example, we give a H ER D of turtles.

93

94

TO TU RTLE1

SHAPE LL

BRRFRRFLLFRR FLLFFFFLB B B R FL

FFFRFLBBBU FFFRFDFFFFFRFFF

LFRBBBLFR FFFU BB BLFDFFFFFFFF

LLFFLFFLLFFRBLBLLFRFRRFFFFF

R FRFLFFFLFFFFFFFFLFFFLFRF

END

TO TU RTLE2

SHAPE LL

BRRFRR FLLFRRFLLFFFFRRFFU BB

LLFDRRFFFLLFFU BLLFDFFRR FFFFFFF

R RFFUFLLFDLLFFFRRFRRFFFLLFU B

LLFFFR R F DFFFFFFF

LLFFLFFLLFFRBLBLLFRFRRFFFFF

R F R FLFFFLFFFFFFFFLFFFLFRF

END

TO CRAWL :T : X : Y

HT P U SX : X SY : Y

RT 90

REPEAT 1 00 (

)

EN D

TO T1

HATCH : T+ 1 T1

REPEAT 8 ()

H T F D 2

HATCH 1 T2

REPEAT 8 ()

H T F D 2

I F XLOC M E > 230 (VAN ISH)

HT TU RTLE1

ST

REPEAT 1 0 ()

E N D

3.

TO T2

HT TU RTLE2

ST

REPEAT 1 0 ()

E N D

TO H ER D

CLEAR DRAW H T

MAKE " I 0 MAKE "T 1

REPEAT 20 (

)

E N D

I F : 1< 1 0 (MAKE " I : 1 + 1)

MAKE "J 1

WH I L E : J< : I

(HATCH : T CRAWL : T 0 (: J • 18)

MAKE "T : T+ 2

MAKE ·� : J +1)

REPEAT 900 ()

Super LOGO offers another way to change the turtle shape which is most useful for the crea
tion of games. The command PAT is used to create a new pattern of 16 x 16 dots. The PAT

must be followed by the pattern. For example, the sequence in the following procedure will
change the turtle shape into a small person shape.

95

TO SPACEPERSON

PAT

. xxxx

. . . xxxxxxxx

. . xxxxxx . . xx

. . . xxxxxxxxx

. . . . xxxxxx

. xxx

. . . . xxxxxx

. . . xxxxxxxxxxxx .

. . xxxxxxxxx

. xxxxxxxxxxxx . . .

. xxxxxxxxxxxxxx .

. xxxxxxxxxxxxxx .

. . xxx xxx . .

. . xxx xxx . .

. . xxxxx xxxxx
PU RT gg SETX 1

R EP EAT 20 (FD 5 WAIT 3)

EN D

The dots indicate the positions where nothing should be drawn (that is, they remain the back
ground color), and the X's indicate positions where the turtle foreground color should be
drawn. Here we have given the pattern in 16 rows of 16 dots. That is the easiest to see, but the
16 x 16 = 256 dots can be given in any desired arrangement (for example, 8 x 32 = 256).

While the PAT command makes it easier to give a sizable turtle which is filled in, it is limited
in one sense. The turtle defined by a PAT command does not rotate on the screen. That is, the
turtle appears to face the same way whatever the current turtle heading. This means that the
PAT should be used in situations where the turtle does not rotate (for example, two PAT com
mands could be used in place of the SHAPE commands in O N E and TWO above for WALK,

but not for WALK·AROU N D), or in situations where rotation is not visible, for example, using
a turtle as a sun which moves across a scene).

It is clear that while much is possible with the turtle shapes, Super LOGO is not likely to
become a tool for the generation of Saturday morning TV shows. It was never intended that it
should be so. It is a tool that will allow the child to produce results which can be immensely
satisfying to the creator.

96

18. TURTLE GAMES

One of the most popular applications of computers is gaming. Super LOGO can be used to cre
ate a great variety of games. In this chapter we will give two examples of turtle games. These
are included not as competitors for the local video arcade, but as illustrations of some very
useful techniques for communication between turtles.

Before getting into the details of the simple game we're going to use, we want to point out a
few things which may be obvious. Most of the popular video-arcade and computer games rely
very heavily on speed. Things happen which force the players to react faster and faster until
finally they fail . You've already gotten some feel for the speed at which animation runs in
Super LOGO; it's not going to be fast enough to create shoot-em-up space games that will hold
interest for long. However, it does have capabilities such that the user can create rather than
just play such games. If you want to create games which will also be challenging to play using
Super LOGO, then you might try to think of games where coordination of several moving
objects is the challenge (thus lower speed is no limitation) or games where there is sufficient
strategy that the player must think while playing.

Our first sample game is called CATCH EM. There are two players (or one two-handed player)
who manipulate objects on the screen by pressing keys on the keyboard. The object is for the
chaser to catch the runner. When the chaser catches the runner, the scorekeeper changes the
score, and a new chase starts. There is an advantage to using multiple turtles here, as we can
assign each turtle one task. This simplifies the programming greatly; for example, we do not
have to move a cursor to the scoreboard to change the score and then return to make the next
move.

The master procedure simply names the procedures and assigns the four tasks to four turtles.
We use turtle 0 and three others.

TO CATCH EM

CLEAR DRAW

HATCH 1 G ETKEYS

HATCH 2 R U N N ER 20

HATCH 3 C H ASER

SCOREKEEPER 0

EN D

The names of the procedures are pretty descriptive. R U N N ER controls the runner, and
CHASER controls the chaser. SCO R EKEEPER keeps the score. G ETKEYS reads input from
the keyboard. Of course the various turtles need to communicate, and that is the main new
idea we will illustrate in this example.

97

Let's begin with the keyboard.

TO G ETKEYS : X
HT

W H I L E 1 =1 (MAKE "X KEY

)

EN D

I F : X 'S (SEN D 2 1)

IF : X ' D (SEN D 2 45)

I F : X 'A (SEN D 2 315)

I F : X 'K (SEN D 3 1)

IF : X 'L (SEN D 3 45)

I F : X 'J (SEN D 3 315)

First we see a trick we used before: the use of WH I L E 1 =1 as an effective REPEAT

FOREVER. The second new item is the KEY function. The KEY function looks at the key
board to see if any key has been pressed. If no key has been pressed, then KEY returns the
value 0. Thus, if at the time turtle 1 is executing the statement

MAKE "X KEY

no key is depressed, then the variable "X is given the value 0. If on the other hand a key is
depressed, then the variable "X is given the ASCII value of the key. So the KEY function
returns either the ASCII value of the key depressed or 0 if no key is depressed. The ASCII
value is a number assigned to each key on the keyboard according to an industry-wide conven
tion. In this procedure we do not have to know what the particular number is because the
literal (for example, 'S) automatically computes the ASCII value as well .

The next task for this procedure is to recognize which key has been depressed and to send a
message to the appropriate turtle. We have to decide what keys to use for what actions of the
runner and the chaser. We decided on the following key assignments.

s move runner forward

A turn runner left

D turn runner right

K move chaser forward

J turn chaser left

L turn chaser right

So now we see what (if any) key was pressed. First look at the statement

I F : X = 'S (SE N D 2 1)

98

The literal 'S gives the ASCII value of the argument S. That is, the condition : X = 'S in
combination with the previous KEY function checks to see whether the [[] key was depressed.
If the [[] key was depressed, then the statement SEN D is run.

The SEN D statement sends a message to another turtle by leaving the message in a mailbox.
The first number after the SEN D is the address of the message. In the line we are analyzing
the address is 2, so this message can be picked up from the mailbox only by turtle 2. The
address can be an expression as well as a number. The second number after the SEN D is the
message. Here the message is the number 1 ; in general the message can be any number in the
range covered by Super LOGO (-32768 to 32767) or an expression which gives a number in
this range. To review,

SEN D 2 1

leaves the message 1 in the mailbox for turtle 2 . Because the [[] key is to move the runner
(turtle 2), the message 1 must mean move. We'll see that in the procedure RU N N ER.

Although we aren't going to use it in this example, there is a way to send a general message
to the first turtle that picks up its mail. We just use the turtle address 255; then the next
turtle that inquires will get the message. If we wanted to send an all points bulletin to all
turtles, we could do so by setting a global variable (see Chapter 8).

The rest of G ETKEYS is just more of the same. We check for each of the keys which control
the runner and send a message to turtle 2 if one of them is depressed, and we do the same for
the three keys which control turtle 3. Notice that the W H I LE 1 =1 causes turtle 1 to continue
to poll the keyboard forever. There are certain features of Super LOGO which make this part
of the programming very simple. By assigning one turtle the task of watching the keyboard at
all times we make sure that the two players have equal access to control; we are very unlikely
to lose keystrokes while something else is happening, and provision for regular polling of the
keyboard is handled automatically by the logic which handles multiple turtles.

Now let's turn our attention to R U N N ER.

TO R U N N ER : X

P U SX : X

SHAPE FFFFFFFFU B B B R R F D

FFU BB B D B B B

WH I L E 1 = 1 (MAKE " X M A I L 1

I F : X

)

E N D

(I F : X = 1 (F D 8)

ELSE (RT : X)

)

R U N N ER sets a starting position for the runner, lifts the pen so that the runner leaves no
tracks (which makes no difference in the chase, but keeps the screen clean), and draws a shape
so that the runner will look different. We then enter another W H I L E 1 =1 , which will run
forever.

99

The runner turtle now checks its mailbox by using the MAI L function. The number following
MAI L (the argument) is the number of the turtle that the runner turtle will accept mail from.
Here turtle 2, the runner turtle, is asking for mail from turtle 1 , the keyboard turtle. If there
is no message, then MAI L returns the value 9. The statement

I F : X

checks for the value of : X. If it is 0, then the statements in parentheses are skipped. Since the
parentheses enclose all the rest of the commands, a 0 causes the loop to start again. Thus the
turtle just keeps checking its mail until it gets a message from turtle 1 .

I f we look back at G ET KEYS we see that a message 1 meant t o move. Therefore i f : X = 1

the runner is moved forward 8. If at this point the message is not 1 , then it must be either 45
or 315. The runner is turned right by either amount (remember that RT 31 5 is the same as
LT 45). This completes the move, so the turtle goes back to checking its mail from turtle 1 .

Before going further, look carefully at the arrangement of the two I F statements i n R U N N ER.

Notice that the _parentheses after the first IF enclose the second IF and the ELSE. This pairs
the ELSE with the second I F. The meaning is: if : X is not 9 (the first I F), then do one or the
other of the following; if : X is 1 , move forward - otherwise turn.

The CHASER procedure is similar to R U N N ER, but it includes the test for a successful
catch.

TO CHASER : X
W H I L E 1 =1

(HO M E PU

)

E N D

W H I LE N EAR 2 > 1 2

(MAKE " X M A I L 1

)

I F : X
(I F : X=1 (FD 16)

ELSE (RT : X)
)

SEN D 9 1

CHASER includes nested W H I LE statements. The first one starts the chaser and runs for
ever. The inner one runs until a capture is made. The definition of a capture is that the value
returned by the N EAR function is 12 or less. The portion of the procedure controlled by the
condition N EAR 2 > 1 2 is identical to that in R U N N ER. Remember that the N EA R func
tion returns the total number of X and Y steps from the current turtle to the designated tur
tle, here to turtle 2. Thus the inner part of the procedure says to continue checking mail and
making moves as long as the runner is more than 12 steps away.

100

If the runner is not more than 12 steps away, then turtle 3, the chaser, sends a message (1) to
the scorekeeper (turtle 0). Having sent the message, the chaser returns to the home position
and the chase begins again.

Now we turn to the procedure for the scorekeeper.

TO SCOR EKEEPER : S

HT SX 200 SY 180

W H I L E 1 =1

EN D

(PRINT C HAR(32)#CHAR(32)

P R I NT : S

W H I LE MAIL 255 = 0 ()

MAKE "S : S + 1

)

Again there are several new ideas in this procedure. The first steps are to hide the turtle and
to position it to keep the scoreboard. We set the initial score to 0 by the call of the procedure
and again use a WH I L E 1 =1 to keep this turtle keeping score forever. The PRINT statement
causes what follows to be printed on the screen at the current turtle position. The turtle is not
moved. However, we want to print spaces to erase the old score, and LOGO uses the space to
indicate the end of something. Therefore, to print spaces we must use the CHAR function. The
CHAR function returns whatever character in the ASCII convention corresponds to the num
ber in parentheses. C H AR(32) gives a space. To put two sets of characters together (here two
spaces together) we use the concatenation operator #. Thus the combination

CH A R(32)#C HA R(32)

gives two spaces.

The PRINT statement also can be used to print the current value of a variable. MAI L 255 is
a special version of the MAI L function. MAIL 255 will accept messages from all other turtles.
Here we could use MAIL 3 just as well, since turtle 3 is the only one sending messages to the
scorekeeper. The following line:

WH I L E MAIL 255 = 0 ()

continues to check until mail is received.

One useful characteristic of the MAI L function is that, like any decent mail system, it will col
lect messages. Thus if several messages have collected from one or more sources, the MAI L

function will deliver the oldest undelivered message and keep the others for future reference.
A SEN D 255 goes onto every turtle's list. That message disappears from all lists when one
turtle accepts it.

101

Now that you have the whole set of procedures entered, you can try running the game. To
start it, run CATCH EM. Just remember that this is an educational experience, not pure
entertainment. You may discover that there is a flaw in the game. If the runner is caught
close to home, then, because the chaser is returned to home after each successful catch, the
runner is unable to escape and the score mounts. You could fix this by moving the chaser else
where if the runner is too close to home, or by just incrementing the x position of the chaser
by some large number (say HJ(3) after each catch.

One interesting variation of the game uses a turtle which obeys Newton's Laws. These so
called "DYNATURTLES" are set in motion and continue in motion in the same direction until
disturbed. The two turning keys now change the direction of a thrust instead of changing the
direction of the turtle directly. The third key gives the turtle a thrust or push in the current
direction. The following version of R U N N ER shows how this is done.

TO R U N N ER : X : VX : VY

PU SX : X

SHAPE FFFFFFFFU B B B R R F D

FFU B B B D B B B

W H I L E 1 =1

)

E N D

(MAKE " X MAI L 1

I F : X = 1 (

MAKE "VX : VX + SI N H EADING M E

MAKE "VY : VY+ COS H EADING M E)

I F : X = 45 (RT 45)

I F : X = 315 (LT 45)

SX XCOR + : VX

SY YCOR + : VY

Here : X = 1 means there should be a move in the current direction. We move the turtle by
a series of SX and SY commands; the increments (: VX and : VY) are adjusted by use of the
standard trigonometric functions SIN and COS.

To use this modified version of CATCH EM we have to make the above changes in C HASER

as well as in R U N N ER, and we must set some initial values of : VX and : VY for both players.
The initial values are set in the procedure CATCH EM by adding numbers onto the procedure
calls. You might start with values about 5 , and it makes a better game if the chaser is a bit
faster than the runner.

The second game is called REBO U N D. It makes use of the game controllers. The object of the
game is to bounce a ball off two paddles onto a target. Here we'll need a few more turtles. We
first assign four tasks: reading of the two controllers, a scorekeeper, and a trigger to start the
whole thing off.

102

TO REBO U N D

CLEAR HT

HATCH 2 PADDLE1

HATCH 3 PADDLE2

HATCH 6 SCOR EKEEP

TRI G G ER

EN D

Let's look at the paddle controls first. The paddles can be turned to direct the ball to the
target.

TO PADDLE1

HT SX 60 SY 180

TU RN 0

E N D

TO TU RN : P : X

WH I L E 1 =1

(MAKE "X PADDLE : P/2

L I N E 3

)

E N D

SH 45 + 3• : X

L I N E 0

WH ILE PADDLE : P/2

TO L I N E : COLO R

P C : COLOR

FD 1 5 BK 15 BK 15 F D 1 5

E N D

: X ()

PADDLE1 establishes the position of the first paddle on the screen. It calls TU R N which
actually reads the game controller. The new idea in TURN is the use of the PADDLE func
tion. The PAD DLE function returns a number between (J and 63 for the designated input; the
number depends on the position of the controller handle. The inputs are (J and 1 for the
horizontal and vertical positions of the left game controller and 2 and 3 for the horizontal and
vertical positions of the right game controller. Thus PADDLE1 , by the instruction TURN 0,

tells the procedure TU R N to read the horizontal position of the left controller (left refers to
the position of the plug on the rear of the Color Computer). Because the instruction is

MAKE "X PADDLE : P/2

the variable "X holds a number between (J and 3 1 . This division of the controller reading by 2
reduces the sensitivity of the display and speeds response. Notice that, after the first pass
through TU RN, the procedure looks for a change in the controller setting. It stays in the loop

W H I LE PADDLE : P/2 = : X ()

103

until there is a change. When there is a change, it runs through the outer loop which updates
: X, erases the old paddle (L I N E 3), computes a new heading (SH 45 + 3• : X), and draws a
new paddle (LI N E 0). Remember that : X can be between 0 and 3 1 , so the heading for the
paddle can be between 45 and 45 + 3•(31) = 136. The procedure L I N E actually draws the
paddles and erases them. The B K is broken into two steps so that it exactly duplicates the FD

steps; this insures a successful erase.

The second paddle is controlled by the second controller. We can use TU RN and L I N E again.

TO PAD DLE2

HT SX 180 SY 12

TU R N 2

EN D

Now we have to create the ball and the target. TRIGG.ER starts a new round.

TO TRIGGER

HT

HATCH 4 BALL

VAN ISH

EN D

The ball should come from a randomly selected point towards the first paddle. The easiest way
to do that is to create the ball turtle at the first paddle and to move it (invisibly) in the ran
domly selected direction. These two tasks will be carried out by the procedures
LAU N C H BALL and STARTSPOT.

104

TO BALL

LAU N C H BALL

WH I L E MAI L 5 = 0

(STARTS POT

HATCH 5 TARG ET

R EP EAT 45

(FD 1 0

I F N EAR 2< 20

(FD 1 0 LT (H EA DI N G 4 -

H EADING 2 + 180)•2 F D 35)

I F N EAR 3< 25

(FD 1 0

LT (H EADI NG 4 -

H EADING 3)• 2 F D 45)

)

TRI G G ER

EN D

At the same time we create the target at a randomly selected position (HATCH 5 TARG ET).

The REPEAT loop actually moves the ball. If the ball is close to the first paddle (turtle 2), the
heading of the ball is changed

LT (H EADING 4 - H EADI N G 2 + 189)•2

There is a similar change when the ball is close to the second paddle (turtle 3). Notice that
when the ball has moved the maximum distance it triggers a new ball before disappearing.

TO LAU NCH BALL

HT PU

PAT

. xxxx

. xxxxxx

. . . . xxxxxxxx

. . . . xxxxxxxx

. . . . xxxxxxxx

. . . . xxxxxxxx

. xxxxxx

. xxxx

MAKE "Y RAN DOM 69 + 169

EN D

TO STARTSPOT

HT SH : Y SX 69 SY 189

REPEAT 6 (FD � 9)

W H I LE XLOC 4> 7 & YLOC 4>7

(FD 1 9)

RT 189 ST F D 1 9

E N D

LAU NCH BALL creates an appropriate shape for the ball and effectively picks a random start
ing point by picking the heading. STARTSPOT hides the ball turtle, locates it at the first
paddle, moves it until it reaches the edge of the screen, and finally turns it around and makes
it visible.

105

TAR G ET does the scoring. First it picks a random position and creates a target shape. Then it
watches for a close approach of the ball from below (if the ball approaches from above, it has
not bounced off the second paddle). If the ball (turtle 4) comes close enough, then a message is
sent to the scorekeeper and to the ball.

TO TAR G ET

SH 0

HT SX RAN DOM 1 00 + 135

SY RAN DOM 40 + 1 20

SHAPE U R R FFFFFFFFFLLLDFFFF

FLFFFFFFFFFLFFFFF

ST

REPEAT 1 00

(I F N EAR 4< 1 5 &

ABS (H EADING 4 - 180)> 90

(SE N D 6 1 SEN D 4 1)

)

VAN ISH

EN D

The SCOR EKEEP procedure is essentially the same as before.

TO SCOREKEEP : SCO RE

HT SX 200 SY 180

W H I L E 1 =1

)

E N D

(PRINT CHAR(32)#C HAR(32)

PR INT : SCORE

W H I LE MAIL 5= 0 ()

MAKE "SCORE : SCOR E + 1

COLO RSET 1 COLORSET 0

These two examples should help you to implement your own ideas for more complex games.

106

19. WORD AND LIST OPERATIONS

The origin of LOGO can be traced to the field of artifical intelligence. The main goal of com
puter scientists in the field of artifical intelligence is to design programs which will make a
computer appear to have what a human being would describe as intelligence. This is an
extremely difficult problem. One part of the problem is to make the computer understand
English (or German, or Japanese, or whatever). The LISP computer language, on which LOGO
was based, was designed for the manipulation of words and sentences for this purpose. Super
LOGO includes operators and functions, drawn from LISP, for the manipulation of words as
well as numbers. In this chapter we'll learn about the primitive functions.

The arguments of the functions are called words and lists. A word in LOGO is similar to, but
somewhat more general than, a word in English. In LOGO a word is a series of characters
ended by a space. In English a word includes only the 26 letters, and not all combinations and
sequences of the letters are allowed as words. In LOGO almost all characters which can be
entered from the keyboard can be part of a word, and there are no rules which limit the com
binations. The following are all legal words in LOGO:

"FEW "MANY " DOG "ALPHABET "XXYYZZ "RT$%;9

The leading quotation mark (") indicates that these are words. The quotation mark is neces
sary to distinguish a word from a procedure name, but the quotation mark is not part of the
word. We have already used words as variable names in MAKE commands.

MAKE "X 21.l

This shows that a word can have a value attached to it. We will return to this point later.

These LOGO words already give some indication of the difficulty of dealing with words via the
computer. It is relatively easy to program the computer to distinguish meaningful numbers
and mathematical expressions from nonsense, but it is not possible to program a microcom
puter to distinguish real words from nonsense combinations of characters. Therefore, in deal
ing with words we are going to have to be more selective in our projects, and we are going to
have to supply the computer with restricted, selected words to operate on if we are to avoid
nonsense. Computers do not understand enough about English for us to use a discovery learn
ing approach to the English language.

In LOGO we call a series of words a list. A sentence is a list, but a series of numbers is also a
list. Elements of a list (words) are separated by spaces. Lists are indicated by enclosing them
in square brackets. (The I S H I FT I [fil , I S H I FT I [[] sequence produces the left bracket and the
I S H I FT I [fil , I S H I FT I [[] sequence produces the right bracket.) Several lists are shown below:

[ON E TWO THREE FOU R]

[1 2 3 4]

[TH I S SENTENCE IS A LIST]

[OVER 556 ELEPHANT RALPH LJ ; X]

[REMOVE]

[]

The last two examples show that a list can contain as little as a single word and that a list
can be empty.

107

There are two limitations which govern the words and lists in Super LOGO. The maximum
length of a word is 13 characters. Lists consists of words, not of other lists.

We can try out the simple word and list functions without entering procedures. Get into RUN
mode. The basic command to check the result of one of these functions is the P RI NT com
mand. The PRINT command prints at the current position of the turtle without moving the
turtle. This can get confusing if we do several PRINT commands in sequence. By entering

FULLTEXT

we convert to a pure text screen. The text window, which usually occupies only the bottom
four lines of the screen, then occupies the whole screen, and the PRINT command prints on
the next available line. So enter FULLTEXT.

As a first step, enter the command

PRINT "ABSOLUTE

ABSOLUTE

and notice that the word ABSOLUTE is printed on the next line. Next try the FI RST

function.

PRINT FI RST "ABSOLUTE

A

Because the object of the function is a word, Fl RST returns the first letter of the word as a
new word. Try

PRINT FIRST FI RST "ABSOLUTE

A

The B UTFI RST function produces what its name implies. Try

PRINT B UTFI RST "ABSOLUTE

BSOLUTE

The abbreviation for BUTFI RST is B F. Combinations of the two functions can be used to
select any letter in a word. The following combination will select the third letter.

PRINT FI RST B F B F "ABSOLUTE

s

Notice that the order of operation is from right to left. Compare the result with the sequence

PRINT B F B F FI RST "ABSOLUTE

Here the function FI RST is done first, returning the letter A. The BF function then returns
the empty word, and the end result is a blank.

108

We have a similar set of functions for working on the end of a word. Try

and

and

PRINT LAST "ABSOLUTE

E

PRINT BUTLAST "ABSOLUTE

A BSOLUT

PRINT LAST BL BL "ABSOLUTE

u

So we have a set of functions for pulling words apart. You might have guessed that we have a

function for building words too. The WOR D function combines two words into a new word. Try

and

PRINT WOR D "SNOW "BALL

S N OW BALL

PRINT WOR D WOR D "SNOW " BALL "ED

S N OW BALLED

These are the primitive functions for words. Remember that a word can be as short as a single

letter or even an empty word.

Note: In RUN mode, a list processing command cannot be longer than one line.

Most of these same functions can be used on lists. Try

PR INT FI RST [ON E TWO T H REE]

O N E

Notice that the result of the FIRST.function, O N E, is the first word from the list. Therefore,

the command

PRINT FIRST FI RST [ON E TWO]

0

will return the word 0. Try the other commands as well .

PR INT BUTFI RST [A B C D]

B C D

PRINT LAST [A B C D]

D

PRINT BUTLAST [A B C D]

A B C

109

Obviously combinations can be used, as they were used with words, to pick out any word from

a list.

Words are combined into lists by the SENTENC E function. Try

PRINT SENTENC E "SNOW "BALL

S N OW BA LL

Contrast the result here with the result using the WOR D function (SNOWBALL).

SENTENCE produces a list; WOR D produces a word.

Lists can be combined, and words and lists can be combined. We'll use the abbreviation SE for

the SENTENCE function.

PRINT SE [SLOW BOAT] [TO C H I NA]

S LOW BOAT TO C H I N A

The functions FPUT and LPUT also can be used to combine a word and a list to form a new

list, and the function LIST also can be used to form a new list from two words. They are

included for compatibility with other implementations of LOGO, but we'll stick with

SENTENCE in our examples (see Appendix I for more information).

This completes the introduction of the primitive word and list functions. Notice that these are

functions which produce a result which is not visible on the screen, unless printed. This is

different than turtle graphic primitives which produce visible results automatically. To make

full use of these new primitives we'll have to learn to pass the results between subprocedures

and procedures.

110

20. COMMUNICATION BETWEEN PROCEDURES

Thus far all our procedures have produced graphics. Graphic procedures produce figures or
patterns on the screen; the result of such procedures is a track and a final turtle position and
heading on the screen. Although numbers were sent from a higher level procedure to a lower
level subprocedure (for example, by commands like BOX 50), no information was sent back
from the subprocedure to the higher level procedure. But in other applications information
must be sent both ways. In this chapter we will learn to return results from subprocedures to
higher level procedures. In the process we will learn a bit more about variables.

The primitive commands thus far can be separated into two classes. In one class we have the
commands which can be executed on their own, without any additional information. The
following commands require no additional information:

PU P D ST HT CLEAR DRAW SPLITSC R EEN

Other commands require additional information before they can be executed:

FD BK RT LT PC SX SH

Each command in the second set needs a number to become a functional command; for
example,

F D 30 B K 40 RT 90 LT : AN G LE PC 1 etc.

Most functions, for example

MAI L N EAR RANDOM FIRST LAST

also need more information (usually called an "argument") to operate.

MAIL 2 N EAR 3 RAN DOM 5 FI RST : L etc.

Notice that the functions not only require an argument, but that they also produce a result
that could be used as an argument .for another function.

MAI L FI RST : L

RAN DOM MAI L 2

N EAR RAN DOM 5

N EAR FI RST : L

When we need an operation which LOGO does not include as a primitive, we write a subproce
dure which carries out the operation and which we can use like a new primitive. For instance,
in Chapter 5 we wrote the subprocedure BOX, and then we used the word BOX just as we
used the primitive operations F D and RT. But how do we write subprocedures which supply
new functions, which produce results and which can be used in other procedures just as we use
supplied functions like RAN DOM?

111

We'll illustrate the process by writing a subprocedure which duplicates the action of an exist

ing function ABS. The ABS function returns the absolute value of the argument. That is, if

the argument is positive, then no change is made, but if the argument is negative, its sign is

changed. The following procedure carries out exactly those actions.

TO ABSOLUTEVALU E : N U M BER

I F : N U M B E R < la

(MAKE " N U M B E R : N U M BER * -1)

END

This procedure does the conversion to a positive number, but in its present form it cannot be

used as a new function. The problem is that the subprocedure ABSOLUTEVALU E does not

return the value to the higher level once it has made it positive.

The command to return a value is the OUTPUT command. We can make the subprocedure

operate as a function by adding an OUTPUT command at the end.

TO ABSOLUTEVALU E : N U M BER

I F : N U M BER < la

(MAKE " N U M BER : N U M BER * - 1)

OUTPUT : N U M BER

EN D

On the receiving end (the higher level procedure) the computer must be instructed to pick up

the result. For example, the command

ABSOLUTEVALU E - 1 1a F D RESU LT

gives the desired action. The OUTPUT command in ABSOLUTEVALU E transmits the new

value, and RESU LT picks it up for further use.

Note: Other implementations of LOGO do not use the R ES U LT operation because they

cannot handle multiple turtles. Single-tasking implementations allow the syntax

F D ABSOLUTEVALU E - 1 fl

but Super LOGO does not.

For those experimenting with examples from books written for other implementations,

the translation process is:

1 . Replace the subprocedure name (and parameters, if any) with the command

RESULT.

2 . Insert the subprocedure name (and parameters, if any) before the command which

will use the result.

112

Given the availability of the ABS function, the sample procedure is not really useful. How
ever, there are a number of other mathematical functions which might be of use. For example,
Super LOGO does not supply a function for raising a number to a power. The following proce
dure supplies it.

TO EXP : N U M BER : POWER : X

MAKE "X : N U M BER

REPEAT : POWER - 1 (

MAKE " N U M BER : N U M BER * : X)

OUTPUT : N U M BER

E N D

Try this out with the commands

FT

EXP 2 3 PRINT RESULT

8

FT

EXP 6 3 PRINT R ESULT

2 1 6

A square root function is even possible a s long a s you allow for the limited accuracy of the
division operation. The following procedure makes use of a common process of successive
approximations for the square root of a number.

TO ROOT : N : G

I F : N < O (PRINT [N EGATIVE] STOP)

MAKE "G : N/2

WH I L E ABS(: G • : G - : N)> 1 + : N / 1 0

(MAKE "G (: G + : N I : G)•0.5)

O UTPUT : G

E N D

Try this out with the following (be ·sure to hide the turtle first).

Note: Clear the screen between answers, or a shorter answer will retain the last digit of
a longer answer.

ROOT 1 0 PRINT RESU LT

3.41

ROOT 1 00 PRINT R ESULT

1 QJ.QJ5

ROOT 1 0000 P R I NT RESULT

1 QJ 1 .48

113

While the accuracy is limited by division, it is sufficient for calculating the distance between
points on the screen. Notice that we include a trap for negative numbers. The accuracy can be
increased within a more limited range of numbers by adjusting the condition on the WHI LE,

but if you try for too much, you will end up in an endless search.

The next step is to combine some of these procedures. For example, we might want to compute
the square root of 5 raised to the 3rd power. If you have entered the procedures EXP and
ROOT, the following line will print the correct result.

EXP 5 3 ROOT R ESULT P R I NT RESU LT

1 1 .46

Notice that the line reads exactly in the order that the computer does the operations. To make
sure you have this straight we'll give another example. If we want to print 5 raised to the 3rd
power and then multiplied by 6, we enter

CLEAR FT

EXP 5 3 PRINT 6• RESU LT

75�

In these examples we've used the MAKE command several times. Look at the example

MAKE "G : N/2

In the last chapter we learned that the notation "G indicates the word G . Variable names are
words; any word can be a variable name. The notation : N designates the contents of the varia
ble with the name N. The contents of a variable are completely distinct from the name of the
variable. The name must be a word, but the contents may be a number, a word, or a list.

The next procedure takes advantage of this difference.

TO P H O N EBOO K

MAKE "DEN NIS "555 - 3958

MAKE "JOE "555 - 9935

MAKE "CH RIS "555 - 9965

MAKE "ELAI N E "555 - 7563

EN D

First run this procedure :

FULLTEXT PHON EBOOK

then enter commands like

PRINT "CH RIS PRINT : CH RIS

114

The computer will respond with the two lines

CH RIS

555 - 9965

The first command, P RI NT "CH RIS, tells the computer to print the literal word CH RIS. The

second command, PR INT : CH RIS, tells the computer to print the current value of the varia

ble named CH RIS, which is the phone number. The command

MAKE "CH RIS "555 - 9965

in the procedure PHON EBOOK loaded the word 555 - 9965 into the memory space named

CH RIS. Remember that MAKE commands will always have a variable name (a word) followed

by a value (a word, a number, a list, or an expression which evaluates to a word, number, or

list).

In the examples in this chapter the values output and used as results have been numbers,

mainly because this minimizes the confusion between the name of the variable and the value

it holds. In following chapters we will see examples where the values can be words and lists as

well .

115

21. INTERACTIVE PROCEDURES

Many list processing procedures (procedures that manipulate words) will be more interesting if

they are interactive, that is, if the person running the procedure can feed information into the

procedure from the keyboard while the procedure is running. We've already seen one way to do

that, the KEY function. The KEY function is most suitable for writing game procedures

because it checks the keyboard and then continues immediately. Now we want a way to tell

the computer to wait until it receives appropriate information from the keyboard.

The READCHAR function (abbreviated RC) accepts a single character from the keyboard.

This character becomes a word. The character does not appear on the screen when the key is

pressed; we must print it if we want it to appear. We'll begin with a very simple example, a

procedure which asks whether a statement is true or false.

TO Q U ES

PR INT [COWS CAN FLY]

PR INT [TYP E T FOR TRUE]

PRINT [TYPE F FOR FALSE]

I F RC = "F (PRINT "RIG HT)

ELSE (P RINT "WRON G)

E N D

This procedure starts by printing three lists which give the statement and the instructions.

The RC (READCHAR) function waits until a key is pressed and makes the key pressed into a

word. If that word is the same as the word F ("F), that is, if the [EJ key was pressed, then the

command is to print the word R IG HT; otherwise print the word WRO N G . When you enter

and run Q U ES (remember FT QU ES) you will notice that the letter selected does not appear

on the screen. If we want to show the letter, then we must print it. There are several ways this

can be done.

TO QU ES1

FT

PRINT [COWS CAN FLY]

PRINT [TYP E T . FOR TRUE]

PRINT [TYPE F FO R FALSE]

I F RC = "F (PRINT SE "F "RIG HT)

ELSE (PRINT SE "T "WRON G)

E N D

TO QU ES2 : ANSWER

FT

PRINT [COWS CAN FLY]

PRINT [TYP E T FOR TRUE]

PRINT [TYP E F FO R FALSE]

MAKE "ANSWER RC PRINT : ANSWER

I F : ANSWER "F (PRINT "RIG HT)

I F : ANSWER = "T (PRINT "WRONG)

EN D

117

TO Q U ES3

FT

PR INT [COWS CAN FLY]

P R I NT [TYPE T FOR TRUE]

P RI NT [TYPE F FO R FALSE]

TEST RC = "F

I FTRUE (PRI NT SE "F "RIG HT)

I F FALSE (PRI NT SE "T "WRO NG)

E N D

I n the first and third examples we have combined the letter and the feedback into a sentence.

In the second example we have transferred the letter into the variable named ANSWER so

that we can do several things with it (print it and use it in two conditions). The third example

also illustrates a useful alternative to the I F. .. TH EN ... ELSE control statements. The TEST

statement tests whether the expression is true or false and saves that information for future

reference. The list of commands following the I FTRUE will be executed only if the result of

the TEST statement is true.

The list of commands following the I FFALSE statement will be executed only if the result of

the TEST statement is false. The TEST ... I FTRU E . . . I FFALSE combination is most useful

when the test and the actions which are to depend on that test are somewhat separated

within a procedure.

Next we move to an arithmetic drill . The procedures will turn out to be a bit more complex

than you might expect, but they form a good illustration of some important differences

between numbers and words. To keep things simple we want to present some single digit addi

tion questions. Try

TO A D D : SU M

FT

PR INT [2 + 3 =]

MAKE "SU M RC PR INT : SU M

I F : SU M = 5 (PR INT "CORRECT)

ELSE (PRI NT [NOT CORRECn)

EN D

2 + 3 =

6

N OT C O R R ECT

This works, but we can do better. It would be nice to use the RAN DOM function to make the

computer make up questions, and it would be nice to present the question as it might appear

in a book:

118

2

+ 3

with the answer in line. We'll make the presentation of the problem the job of the subproce

dure PICK. Then our main procedure is

TO DRILL : ANSWER : G U ESS

FT

REPEAT 5 (

)

E N D

P I C K MAKE "ANSWER RESU LT

MAKE "G U ESS RC

PRINT SE CHAR 32 : G U ESS

IF : G U ESS = : ANSWER

(PRI NT "GOO D)

ELSE (PRINT [NOT RIG Hn)

We've decided to give 5 problems. P ICK must pick the two addends, print them on the screen,

and output the sum back as the result which is assigned to the variable ANSWER.

TO PICK : A1 : A2

MAKE "A1 RAN DOM 5

MAKE "A2 RAN DOM 6

PRINT C HAR 32#CHAR (48 + : A1)

PRINT LPUT CHAR (48 + : A2) [+]

OUTPUT : M + : A2

EN D

The first two lines are familar from earlier work with turtle graphics; the PRINT lines con

tain new ideas. We want to print the value in A1 , but not in the first column (because of a

" + " sign with : A2). Therefore we want to make a list with a space as the first word and the

digit in A1 as the second word. We can't just enter a space from the keyboard because a space

means the end of whatever precedes it, so we use the CHAR function to generate a space

character within the list. CHAR 32 gives a space. Lists are lists of words, and the value in A1

is a number. It must be converted into a word before it can be used in a list. Again we use the

CHAR function. The digit 0 is CHAR 48, and the remaining digits follow in order, so

CHAR (48 + : A1) gives a one digit word. The concatenation operator (#) combines the two

words (space and digit) into a list. The next PRINT command uses the same technique to con

vert the value into a word, but it uses a different function to combine the two words (+ and

digit) into a list. The LPUT function expects a word and then a list, and it adds the word to

the end of the list.

Now we return to examination of the main procedure. The response from the keyboard is

assigned to the variable G U ESS. Printing the value in G U ESS will print it in the first

column of the screen. This time we indent by making a list from a space (CHAR 32 again),

and the value in : G U ESS, with the SE function. The combination here is simpler than in

PICK because the value in G U ESS is a word (the RC function always returns a word). The

rest of the procedure is straightforward.

119

As we shall see in the next procedure, we can use the R EADLIST (abbreviated RL) function

when we want more than a single character from the keyboard. As the name of the function

indicates, the result of this operation is a list, even if the list is only a single word long. The

input from the keyboard is treated as a list which is ended when the user presses the

I ENTER I key. There is no formal limit to the length of the list other than the capacity of

memory. Note that a list created by a MAKE instruction within a procedure must fit on a sin

gle line, but a list entered from the keyboard is not subject to this limitation. While entering a

list you can backspace to correct typing errors only within a word; once a space has been

entered, the preceding word cannot be changed. The REQU EST function (abbreviated RO) is

identical to the R EADLIST function. The following procedure gives a simple example of the

use of RL.

TO G REET : NAME

FT

P R I NT [WHAT IS YOU R NAM E?]'

MAKE "NAM E R L

P R I NT S E [WELCOM E ,] : NAM E

E N D

W H AT I S YOU R N A M E?

RALPH

W E LCO M E, RALPH

Let's make this a bit more elaborate.

TO G REET2 : NAME

FT

PRINT [WHAT IS YOU R NAM E?]

MAKE "NAME WOR D FI RST R L "

PR INT SE SE [WELL ,] : NAME

[G LAD TO M EET YOU .]

EN D

W H AT I S YOU R N A M E?

VALERIE

W E LL, VAL E R I E, G LAD TO M E ET YOU.

Here we want to use the name within a sentence. Notice the double use of the SE function to

combine the three pieces. Also notice the command

MAKE "NAME WOR D FI RST RL " ,

This takes the name from the keyboard and adds a comma to it. FI RST is needed because R L

produces a list; FI RST takes the first (and only) word from that list and treats it as a word. If

we tried to add a comma to the list, for example with the SE function, there would be a space

between the name and the comma. If we omit the Fl RST function, we get an error message

because we can't make a word from a list and a character.

120

We have now seen all the functions which can be used to make procedures interactive. We'l l

end this chapter with a brief summary.

or

KEY - reads one key from keyboard as the ASCII number if it is depressed

at the moment KEY is executed

RC - waits until one key at the keyboard is depressed and reads it as a

word

R L

RO

PADDLE

reads a l ist, terminated by I ENTER I from the keyboard

reads the position of one of the game paddles as a number between

� and 63

121

22. PLAYING WITH WORDS AND SENTENCES

One obvious application of the word and list functions is to generate and alter English words

and sentences. We quickly discover that English is very complex and that most projects are far

beyond the capabilities of microcomputers. In fact, programming computers to understand nat

ural language is an active research area on the largest current machines. The experimental

approach which is so effective in turtle graphics is not practical with sentences; we do not dis

cover much about English by trial and error with words and lists. In this chapter we will ilhis

trate some simple language procedures, and in the next chapter we will give some examples of

list operations which do not attempt to combine words as sentences.

We'll begin with some procedures which will be generally useful. Often we want to pick a word

from a l ist, either a designated word or one selected randomly. The following procedure, simi

lar to ones which appear in most LOGO books, does it recursively.

TO PICK1 : N : L

I F : N =1 (OUTPUT FI RST : L)

P ICK1 (: N - 1) (BF : L)

OUTPUT RESULT

EN D

The approach is to remove words from the front of the list until word N is reached and then to

output that word. Notice that the OUTPUT function stops a procedure and returns to the next

level up.

To test this procedure enter

FT

P ICK1 3 [A B C D EF G H I]

PR INT RESU LT

and try it with other numbers and lists.

While P ICK1 works, it is very wasteful of memory. The reason is that the computer makes

another copy of the list on every re�ursive call. With larger lists this consumes too much

space. The following procedure uses the same idea but in a REP EAT instead of by recursion.

TO P ICK : N : L

REPEAT : N - 1 (

MAKE "L BF : L)

OUTPUT FI RST : L

EN D

To compare the two we write a test procedure so that RL can be used to accept a list longer

than a single line.

TO PICKOUT : N : L

FT MAKE "L RL

MAKE "N FIRST R L

P ICK : N : L P R I N T RESU LT

EN D

123

PICKOUT

A B C D E F G H I J K L M N O P

Q R S T U V W X Y Z

1 0

J
By experimentation you will find that the first procedure (P ICK1) runs out of memory far

sooner than the second (P ICK). Why? Because the amount of memory used by P ICK1 depends

both on the length of the list and on the number of items which must be peeled off the list

(the number of recursive calls).

The amount of memory used by P ICK depends only on the length of the list. The next proce

dure counts the number of words in a list.

TO LENGTH : LIST : CO U NT

MAKE "COUNT 9

W H I L E : LIST < > []

(MAKE "COU N T : COUNT + 1

MAKE "LIST B L : L IST

)
O UTPUT : COUNT

END

The WHILE segment removes words from the list and increments the count until the list is

empty (an empty list is indicated by the symbols []).

LENGTH can be combined with PICK to select a random word from a list.

For example:

TO P ICKRAN DOM : L : X

LENGTH : L

P ICK (1 + RAN DOM R ESULT) : L

OUTPUT R ESULT

EN D

FT

PICKRAN DOM [A B C D E F G H I]

PR INT R ESULT

H

When we call LENGTH we only pass it the list, but LENGTH expects two variables. Remem

ber that omitted variables are assumed to be zero. L EN GTH returns a result which is subse

quently used as the argument for RAN DOM. A result does not have to be picked up at once;

it stays available until it is picked up or until it is overwritten by another O UTPUT from

another subprocedure called by this procedure.

124

The next procedure tests to see if an item is a member of a list. Here we just output one of the

words TRUE or FALSE to indicate the result. Instead we could count and output the position

of the word in the list (or zero if it isn't there).

TO M EM B ER : WO R D : L IST

W H I L E : LIST < > []

(I F : WO R D = FI RST : L IST

(OUTPUT "TR U E)

MAKE "LIST B F : LIST)

OUTPUT "FALSE

EN D

To test this enter

FT

M EM B ER " IN [AT ON I N TO BY]

PRINT R ESULT

T R U E

Enter other words and lists to check the FALSE output.

With these useful subprocedures we can begin more interesting projects. Conversion of a sen

tence into pig la tin illustrates some techniques. There are various sets of rules for pig la tin;

we'll use the one which requires movement of all leading consonants to the end of the word
and the addition of AY to every word. First we'll write a procedure which converts a single

word.

TO PIG : W

MEM BER (FI RST : W) [A E I 0 U]

IF R ESULT (O UTPUT WO R D : W "AY)

PIG (WO R D B F : W FIRST : W)

OUTPUT R ESULT

E N D

We use M EM BER to check if the first letter of a word i s a vowel . We pick the first letter

(FI RST : W) and check if it is in the list of vowels. Remember that M EM B ER returns TRUE

or FALSE. These words can be used as conditions in expressions; for example, I F R ESULT

(. . .). The commands in the parentheses will be executed if M EM B ER outputs TRUE, but they

will be skipped if M EM BER outputs FALSE. Again remember that OUTPUT is like a STOP;

it returns to the next higher level. The final OUTPUT RESU LT takes the result from the

lower level and passes it on.

125

You should test this procedure before proceeding. Try something like

FT P IG "TRANSLATE PRINT RESU LT

A N S LAT ET RAY

Now we need a procedure which will work its way through a list, picking off one word at a

time, passing it to P IG for transformation, and replacing the original in the list with the new

word. This is useful in other contexts; we are developing a model for transforming every mem

ber of a list into something related. The key here is recursion.

TO M ETAMORPH IZE : S : H

I F : S = [] (OUTPUT [])

P IG FI RST : S MAKE "H RESU LT

M ETAMORPHIZE (BF : S)

OUTPUT SE : H RESULT

E N D

This i s a bit more complex than the recursion we've used with words and lists thus far, s o let's

look at it in some detail. For the moment ignore the check for the empty list. At every level

the first word on the list is passed to P IG, and the metamorphized result is stored in H . Then

the list minus the first word is passed down recursively. Therefore, when the list is empty

every higher level has one metamorphized word in H , and they are in order from first (highest

level) to last (lowest level). When the lowest level is reached (the empty list) an empty list is

output. The next-to-lowest level combines the last word with this into a sentence. This is in

turn passed back up by the O UTPUT function. As the computer works back up through the

levels, it combines the metamorphized word stored at that level with what is output from

below to form a new sentence, and it sends that to the next higher level .

Of course we must try this out. Enter

FT

M ETAMORPHIZE [A TRIAL SENTENCE]

and follow that with

PRINT R ESULT

AAY I A LT RAY E N T E N C ESAY

The following may be obvious. One could replace PIG with any other procedure which

implemented a transformation rule. We have here a way to metamorphize any list to another

list, so long as that metamorphosis is governed by a complete set of rules.

What about going the other way; could we write a set of procedures to transform pig latin into

English? There is no problem removing the AV from the end of each word. But then what?

There is no set of simple rules which tells us whether or not to move a particular consonant

back to the start.

126

Something which is trivial for a child playing with pig latin is extremely difficult to program.
The decision is one which requires vast knowledge of English, not a few rules. As such, it can
not be programmed. This illustrates some of the difficulty of computerized language
generation.

Another popular exercise is the generation of random sentences. As long as we give the com
puter lists which are properly divided into nouns, verbs, etc. , the computer can generate sen
tences which have the correct form . In general they will be nonsensical, which is one reason
that children find them amusing. The following procedure could be extended to form more
complex sentences.

TO MADL I B : N

FT

MAKE "NOUNS [SLUGS EELS RATS]

MAKE "NOUNS : NOUNS#[ELVES MOMS]

MAKE "VERBS [C RAWL SWI M BITE]

MAKE "VERBS : VERBS#[DIVE LOVE]

PICKRAN DOM : NOUNS

MAKE : N RESULT

PICKRAN DOM : VERBS

PRINT SE : N RESU LT

R EPEAT 2500 ()

FT

MADLI B

E N D

You can execute this simply by entering MADLI B i n RUN mode.

Extension of this to three word sentences of the form : noun-verb-noun could be used to
introduce the idea of transitive and intransitive verbs.

A number of other projects are possible, but they quickly become so complex as to limit their
value. For example, a procedure to t:urn a noun into its plural form might be useful . However,
there are so many exceptions to the rules that its utility is limited. Instead of continuing to
generate sentences we will turn to examples where the words on lists are unrelated or where
the relations between the words are simpler than the relations between English words in
sentences.

Note: Before continuing or shutting off the computer, you may want to save the proce
dures in Chapter 22 to disk. A later chapter will use some of these procedures.

127

23. GENERATING AND SORTING LISTS

In this chapter we give examples of manipulation of lists of numbers and words. The relation
ships between the words in these lists will be simpler than the relationships between words in
English sentences.

It is ironic that some of the best examples of list processing are mathematical, for list process
ing was designed to handle sentences. A series is a list of numbers; later members of the
series are derived from the earlier members by straightforward mathematical operations. One
interesting example is the Fibonacci series. It is easy to generate because each new member of
the series is the sum of the previous two members. And it is an accurate representation of a
surprising number of systems found in nature. The interested reader should look at Discover

ing Apple LOGO; An Invitation to the Art and Pattern of Nature by David Thornburg (Addison
Wesley Publishing Co. , 1983) and the references therein. Here we'll settle for writing proce
dures to generate the series.

We need a subprocedure to convert a number to a word. In Super LOGO the computer recog
nizes when a word needs to be converted to a number by context (one cannot add the charac
ters one zero to another number, but one can add the number ten). However, the computer
does not make the conversion in the other direction automatically. In true LOGO fashion,
when we discover that we need a new function, we write a subprocedure to provide it.

TO NTOWOR D : N U M : W : W1

I F : N U M = 0 (OUTPUT "0)

MAKE "W "

W H I LE : N U M > 0 (

MAKE "W1 : N U M

)

MAKE " N U M INT(: N U M/1 0)

MAKE "W WOR D

C HAR (: W1 - : N U M • 1 0 + 48) : W

OUTPUT : W

EN D

This subprocedure uses the INT function to make the result of division an integer. The differ
ence between a number and ten times the integer portion of the number divided by 10 is the
units digit.

: W1 - : N U M * 1 0 + units digit

The CHAR function uses a number as its argument and returns a one character word which
is the character which corresponds to that number in the ASCII sequence. Because zero is
character 48, and because the digits are assigned in order in the ASCII sequence, the above
CHAR function returns the digit selected as a word. The subprocedure repeatedly divides by
10 to move digits to the right, takes the integer portion, converts each digit in turn, and
combines it with the previous digits to form the complete word. The value 0 is treated
as a special case.

129

Now the program to generate the Fibonacci series is quite simple.

TO FIBONACCI : L : T : N

FT P RI NT : L

R EP EAT : T (

EN D

MAKE "N LAST : L + LAST BL : L

NTOWO R D : N

MAKE "L SE : L RESU LT

PR INT : L)

To try this out, we must feed it a two term list and the number of terms we want generated.
For example, try

FIBONACCI (1 1] 1 fa
1 1

1 1 2

1 1 2 3

1 1 2 3 5

1 1 2 3 5 8
1 1 2 3 5 8 1 3

1 1 2 3 5 8 1 3 2 1

1 1 2 3 5 8 1 3 2 1 34

1 1 2 3 5 8 1 3 2 1 34 55
1 1 2 3 5 8 1 3 2 1 34 55 89

1 1 2 3 5 8 1 3 2 1 34 55 89 1 44

The procedure first prints the starting series. Then it repeatedly selects the last two terms
from the series (LAST : L and LAST B L : L) and adds them. The resulting number is con
verted to a word and added to the end of the list. You ask for any number of terms you like,
but after about 22 you have exceeded the capacity of the computer (remember the largest
number possible is about 32000), and the results become erratic.

Sorting is another list operation which is useful and simpler than forming sentences. We could
use the above conversion subprocedure in a procedure for sorting a list of numbers, but for
variety we'll work on alphabetizing a list of words. Because words can be made up of digits,
and because the digits are ordered in the ASCII sequence, the procedures will sort numbers as
well .

There are many ways one can sort a list. This is a topic of continuing interest in computer
science, and you might want to write Super LOGO procedures which implement the various
strategies. Here we'll sort by making a new list. We'll take each item on the old list and insert
it where it belongs in the partially completed new list. We need a procedure which inserts a
word into a list at a given position.

130

TO I NSERT : LIST : WORD : P : J

MAKE "J []

REPEAT : P - 1

(MAKE ·� SE : J FI RST : LIST

MAKE "LIST B F : L IST)

OUTPUT SE SE : J : WO R D : LIST

E N D

I NSERT begins with a n empty list. Words are transferred to list J one at a time until the
position for the new word is reached. (The variable P is the position.) Then two SE fu nctions

are used to put together the copied list, the word to insert, and the rest of the list. This proce

dure should be tested; try

FT I NSERT [AA CC EE GG] "B 2

PRINT RESU LT

AA B CC E E G G

Next we'll write the main procedure. First we transfer the first word to a new list. Then we

take words from the old list and decide where to put them in the new list.

TO ALPHA : LIST : N EW : W : P

FT

MAKE " N EW SE [] FI RST : LIST

MAKE "LIST B F : LIST

W H I L E : L IST < > []

(MAKE "W FIRST : LIST

COMPARE : W : N EW

INSERT : N EW : W RESU LT

MAKE " N EW R ESULT

MAKE "LIST BF : LIST)

P R I NT : N EW

E N D

We use the subprocedure COM PARE (as yet unwritten) to compare the word i n W with the

words in the list N EW and to output the position for W in this list. This result is used by

I NSERT to update the list in N EW. If you want to follow the process, insert the command

PRINT : N EW after the command

MAKE " N EW RESU LT

131

The next step is to write the procedure COM PARE.

TO COM PARE : WO R D : N EW : W1 : N

MAKE "N 1

W H I LE : N EW < > []

)

(MAKE "W1 FI RST : N EW

COM PWOR D : WO R D : W1
I F R ESULT (MAKE "N : N + 1

MAKE " N EW B F : N EW)

ELSE (OUTPUT : N)

OUTPUT : N

E N D

This procedure compares a word and the words o n a list by· taking words from the list i n order

and using the subprocedure COMPWO R D (as yet unwritten) to compare the two words. If

: WO R D precedes the word from : N EW (: W1), then COMPWOR D should return "FALSE so

that COMPARE will output the current value in N . If : WO R D does not precede the word

from : N EW, then COMPWO R D should return "TR U E so that COMPARE will increment

the value in N and move ahead to the next word in the list. If the list is empty, : WOR D

belongs at the end of the original list, and the value in N points to the end of that list.

Finally we must actually make the comparison of the two words and send output as described

above.

TO COMPWOR D : W1 : W2

I F : W1 = : W2 (OUTPUT "TR U E)

W H I L E FIRST : W1 = FI RST : W2

(MAKE "W1 B F : W1

MAKE "W2 B F : W2)

I F ASCI I FI RST : W1 <

ASCI I F IRST : W2

(OUTPUT "FALSE)

OUTPUT "TR U E

EN D

First we check to see if the two words are the same. If they are, their order in the list does not

matter, and we arbitrarily output "TR U E. We then work our way letter-by-letter down the two

words until we find a pair of letters which are different. When we find such a pair, we compare

the positions of the two letters in the ASCII sequence. Because the letters are in order start

ing with A, the lower value comes first in alphabetical order. If one word is shorter, this proc

ess returns zeros for the ASCII value, which gives the right order.

132

This completes the set of procedures. To try it out enter some lists.

ALPHA [DOG CAT BEE H ORSE ZEBRA]

B E E CAT DOG H O RS E Z E B RA

(If you added PR INT : N EW as mentioned on page 131 , you'll see the stages of the sort proc

ess displayed on the screen.)

ALPHA [DOG ZEBRA 456 23]

23 456 DOG Z E B RA

The latter example shows that the procedures sort numbers as well . To really try this out you

might want a procedure that allows you to enter a longer list for sorting. We've already seen

an example of such in Chapter 22.

133

24. CARD GAMES

The sequence of cards in a deck forms a list. In principle, we can program the rules of card

games into a main procedure. We may even be able to use the multitasking capabilities of

Super LOGO to create multiple players with differing strategies.

The first task is to write a procedure which can shuffle a deck of 52 cards. We'll stick to

simple games, ones in which suit (hearts, diamonds, etc.) does not matter. This will save us

some typing, but extension to games involving suits is possible.

To shuffle the deck we'll proceed as follows. The list containing the deck will be rotated a

random number of times (by rotating we mean: take the first item from the list and place it at

the end of the list). The first card will be transferred to the end of the shuffled list, and the

whole process will be repeated with a deck one card smaller.

TO ROTATE : N : L

REPEAT : N - 1

(MAKE "L SE B F : L FI RST : L)

OUTPUT : L

EN D

TO S H U FFLE : N : L : I : J

PR INT "SH U FFLING

MAKE "J []

REPEAT : N

(ROTATE (1 + RAN DOM : N - : I) : L

MAKE "L RESULT

MAKE "J SE : J FI RST : L

MAKE "L B F : L

MAKE "I : 1 + 1

)

OUTPUT : J

E N D

ROTATE outputs the rotated list. S H U FFLE builds the shuffled list i n J . Notice that the

argument for RAN DOM must be adjusted as the unshuffled list becomes shorter. S H U FFLE

outputs the shuffled list.

The procedure DECK actually generates the deck, gets it shuffled and outputs the result to

the main procedure.

TO DECK : L : J

MAKE " L [A K Q J 1 0 9 8 7 6]

MAKE "L SE : L [5 4 3 2]

MAKE "L SE SE SE : L : L : L : L

S H U FFLE 52 : L 0 []

OUTPUT RESULT

E N D

135

This set of procedures generates a shuffled deck of cards. They could be used as they stand for
any card game. To test them try

FT DECK PRINT RESULT

(It takes a few moments for the program to shuffle and print .)

Now we must pick a specific game. Perhaps the simplest card game is War. War is a two player
game. Each player is given half the deck. Each player plays the next card from his or her
hand, and the high card takes both cards played. Captured and played cards are placed at the
end of the winner's hand. The point is to capture all the cards, a process which is usually very
time consuming. However, the lack of strategy makes the game a good one to start with.

We choose to make the game a four-turtle task (because it is list processing, the turtles will
never appear on the screen). The master turtle will deal the cards and handle the rules. That
is, the master turtle will compare the cards played and award the cards to the winner at each
step. The main procedure is as follows:

136

TO WAR : l : J : C1 : C2 : OVER

FT DEC K MAKE "l RESU LT

MAKE ·� []

R EPEAT 26

(MAKE ·� SE : J LAST : l

MAKE "l Bl : l)

HATCH 1 PLAYER : l 26

HATCH 2 PLAYER : J 26

HATCH 3 EN DER 0

W H I L E : OVER = 0

(WH I L E : C1 = 0

(MAKE "C1 MAIL 1)

W H I L E : C2 = 0

(MAKE "C2 MAIL 2)

N U M BERTOCAR D : C1

PRINT RESU LT; PRINT C HAR 32;

N U M BERTOCAR D : C2

PRINT R ESULT MAKE "J RC

IF : C1 > = : C2 (SEN D 1 : C2

SEN D 2 15)

I F : C2 > : C1 (SEN D 1 15

SEN D 2 : C1)

MAKE : C1 0 MAKE : C2 0

MAKE "OVER MAIL 3

)

EN D

This main procedure first sets the screen display and calls for a shuffled deck (DEC K). The

REPEAT divides the shuffled deck into two hands by transferring the last 26 cards to the list

J. Then the two players are hatched (using the PLAYER procedure, not yet written) and are

given their cards. The remainder of the procedure implements the rules of the game. The four
tasks (turtles) are going to have to communicate using the SEN D command and the MAI L

function. Only numbers can be sent and received, so some codes for the face cards (which are

words like A and K) must be established . Because the highest number card has the value rn

we will assign the Jack 1 1 , the Queen 12 , the King 13 , and the Ace 14. The subprocedure
N U M BERTOCAR D converts the numbers 1 1 to 14 to the appropriate card symbol .

The sequence

W H I L E : C1 = 0

(MAKE "C1 MAIL 1)

waits until player one sends a message (plays a card). The message will be the numerical

value of, or assigned to, the card. The procedure then uses a similar set of commands to wait

for a second card. Then the two cards are converted back to symbols (by N U M BERTOCAR D),

and the symbols are printed out. This is useful for us when we are checking the procedures,

but it is not essential for the game. Finally, the values of the two cards are compared and

appropriate messages are sent. The value 15 indicates that the player lost that card; a value

between 2 and 14 indicates the card that was won. The procedure as written gives player 1 an

unfair advantage; player 1 wins all ties. If player 1 is originally dealt an ace, then player 1

can never lose! We'll live with that limitation here, but you might want to change the proce
dure to correspond to your local version of the game. Finally the values of C1 and C2 are reset

so that WAR will wait for cards from the players in the next round.

The game is over when one player is out of cards. When this happens the losing turtle will

send a message to turtle 3 (EN DER) which will in turn send a message back to turtle 0
(WAR). The message from EN DER is kept in OVER. The first WHILE

WH I L E : OVER = 0

continues to check until such a m�ssage is received from EN DER. You might wonder why we

used a separate turtle to keep track of the end of the game when the player turtles are

already sending messages directly to turtle 0. It is easier to distinguish a game ending mes

sage by its source (from turtle 3) than to distinguish it from cards by its value. Both players
use the same procedure.

137

TO PLAYER : L : CO U NT : N : T : M E

NTOWO RD M E MAKE " M E RESU LT

WH I L E : L < > []

)

(NTOWOR D : COUNT

P R I NT SE SE : M E "HAS RESULT

MAKE "N FI RST : L

CAR DTO N U M BER : N 0

SEN D 0 R ESULT

MAKE "T 0

WHILE : T = 0

(MAKE "T MAI L 0)

I F : T = 15 (MAK E "L B F : L

MAKE "COUNT : CO U NT-1)

ELSE (MAKE "COUNT : COU NT + :1

N U M BERTOCAR D : T

MAKE "L SE SE B F : L

FI RST : L R ESULT)

SEN D 3 M E

E N D

TO E N DER : OVER

W H I L E : OVER = 0

(MAKE "OVER MAI L 255)

NTOWO R D : OVER

PRINT SE SE "PLAYER RESU LT

"LOST

SEN D 0 : OVER

END

Let's take PLAYER step by step. We want each player to report on the status of his or her
hand at each step. These are two independent procedures, so we cannot rely on player 1 report

ing before player 2. (A winning play requires more commands to process than a losing play.)
The first line of commands loads a word which is the player's number into the variable M E.

The major portion of the procedure is a loop which repeats until the player is out of cards
(WH I L E : L < > (]). The variable : CO U NT keeps track of the number of cards. This could

also be done by use of the LENGTH subprocedure on : L, but this way is much faster. COUNT

is converted into a word so that it can be combined into a sentence like "2 HAS 24!'

The three lines

138

MAKE "N FI RST : L

CAR DTO N U M BER : N 0

SEN D 0 RESU LT

take the next card off the top of the hand, convert the card into a number (A = 14, etc.), and

send the card to turtle 0. The next three lines make the player wait for turtle 0 to tell them
whether the card won another one or lost. The message 15 means that the card was lost, so

the card is removed from the list L and the COUNT is decreased by 1 . Any other message is

the numeric code for the card that was won. In that case the COUNT is increased by 1 , the
numeric code is translated back to a card, and the card played and the card won are moved to

the bottom of the hand (the list L).

This process continues unless the list is empty. If the list is empty-and those of you who have

ever played War know how unusual it is to ever finish a game - then a message is sent to

turtle 3.

ENDER waits for a game ending message, prints an appropriate message on the screen, and

lets turtle 0 know that it is all over.

WAR uses several other subprocedures. We gave NTOWO R D in the beginning of Chapter 23

- we won't repeat it here. The other two follow.

TO CAR DTO N U M BER : CARD : N

MAKE "N

I F : CARD

IF : CARD

I F : CA R D

: CA R D

I F : CA R D

OUTPUT : N

E N D

"A (MAKE "N 14)

"K (MAKE "N 13)

"O (MAKE "N 12)

"J (MAKE "N 11)

TO N U M B ERTOCAR D : N : CA R D

I F : N< 11 (NTOWOR D : N

MAKE "CARD RESU LT)

I F : N =14 (MAKE "CARD "A)

I F : N =13 (MAKE "CARD " K)

I F : N =12 (MAKE "CARD "0)
IF : N =11 (MAKE "CARD '�)

OUTPUT : CARD

END

These two provide the conversion between the symbols we expect for cards and the number
codes which can be sent between procedures as messages.

The preceding example illustrates techniques which can be used for a variety of card games.

Notice that we could have as many players as we wanted by use of multiple turtles. In games

which involve strategy, separate procedures which implement different strategies could be

written for each player, and those strategies could be evaluated by the results. Instead of doing

exactly that, we'l l show a different type of game, a game in which the user is one of the
players. This time one of the players is the computer, so a strategy will be implemented in a

procedure, but the user is free to pick any strategy desired.

139

The game is the game of blackjack or 21 . The rules are simple; the object is to get closer to 2 1

than your opponent without exceeding 21 . The opponent i s the dealer, one of whose cards is
not visible until a hand is completed. The dealer has several advantages. The dealer wins ties,

and the dealer plays last, thus giving you the opportunity to exceed 2 1 and lose. One other

complication is that all face cards have a value 10, and the aces can be counted as either

1 or 11 .

The game as played seriously has a few additional rules which are included to make betting

more interesting. We won't bother with those here.

The main procedure (BJACK) plays the role of the dealer, that is it handles the

cards and it plays the dealer's hands. The first step is to shuffle the cards using DECK.

BJAC K is very long because of the number of non-repeating steps, but when we follow it

through, we find that it is pretty simple. Following DEC K, which supplies a shuffled deck, a

series of MAKE and PRINT commands deal one card face down to the dealer, one to the
player, a second face up to the dealer, and a second to the player. The cards that are known to

the player at this time are printed.

The procedure C H EC K calculates the value of any hand sent to it as a list and returns the

value as a number. The value of the dealer's hand is kept in D, and the value of the player's

hand is kept in P. A value of 2 1 with just two cards (an ace and a face card or a 10) is an auto

matic win. The sequence

I F : D = 21 (PRINT [DEALER WINS])

ELSE (

I F : P = 21 (PRI NT [YOU WI N])

checks for that situation. If neither I F condition is true, then the procedure begins executing
the commands under the ELSE which follows the above three lines. If either of the I F condi

tions is true, the hand is over and a new hand is begun (the outermost W H I LE : L < > (]).

Next the player plays his or her hand. Cards can be drawn until the value of the hand is over

2 1 . The player is asked to respond with a Y if they want another card. If they do, a card is
dealt off the top of the deck, the new hand is printed, and a new value of the hand is obtained
from C H ECK.

140

TO BJACK : L : DEAL : PLAY : D : P : C

FT DECK MAKE " L R ESULT

WH I L E : L < > []

)

EN D

(MAKE "DEAL FIRST : L

MAKE "L B F : L

MAKE "PLAY FI RST : L

MAKE "L B F : L

MAKE " D EAL SE : DEAL

MAKE "L BF : L

PR INT [DEALER SHOWS

PR INT B F : DEAL

MAKE "PLAY SE : PLAY

MAKE "L B F : L

PR INT [YOU H AVE -];

PRINT : PLAY

FI RST : L

-];

FIRST : L

C H ECK : DEAL MAKE "D RESULT

C H ECK : PLAY MAKE "P R ESULT

I F : D = 21 (PRINT [DEALER WI NS])

ELSE (

I F : P = 21 (PRINT [YOU WIN])

ELSE (

MAKE "C "Y

WHILE : P< 22 & : C = "Y (

PRINT "CARD? MAKE "C RC

I F : C = "Y

(MAKE "PLAY SE : P LAY

FIRST : L

MAKE "L B F : L

PRINT : PLAY

C H ECK : PLAY

MAKE "P RESULT))

I F : P>21 (

PR INT [DEALER WINS])

ELSE (

WHILE : D< H (

MAKE " DEAL SE : DEAL

FI RST : L

MAKE "L B F : L

PR INT SE " D EALER : DEAL

C H ECK : DEAL

MAKE : D RESU LT))

I F : D> = : P & : D< 22 (

PR INT [DEALER WINS])

ELSE (PRINT [YOU WI N])

))

PR INT [N EXT HAN D]

141

The actions are produced by the following section of the procedure:

MAKE "C "Y

WH I L E : P< 22 & : C = "Y (

P R I NT "CA R D? MAKE "C RC

IF : C = "Y (

MAKE "PLAY SE : PLAY

FI RST : L

MAKE "L B F : L

P R I NT : PLAY

C H ECK : PLAY

MAKE "P RESULT))

Now we check to see if the player has lost.

I F : P>Z1 (

PR INT [DEALER WINS])

If not, then the dealer must play according to commands fol lowing the ELSE.

WHILE : D< 17 (

MAKE "DEAL SE : DEAL

FIRST : L

MAKE "L B F : L

PR INT SE " D EALER : DEAL

C H ECK : DEAL

MAKE : D RESU LT))

The strategy for the dealer is to continue to draw until the value of the hand is 17 or greater,
regardless of what the player has. This seems like a very simple strategy; in fact it is what

most casinos use as close to the optimum for the dealer.

The last few steps are straightforward. We check to see if the dealer's total is too high, and if

not, who has the higher total.

There are some obvious extensions we could add to the procedure. We have not kept score, and
this would be easy to do. We have only allowed one pass through the deck; in fact an incom

plete last hand will make the computer do strange things. We could have the condition on the

first W H I L E check to see that there are enough cards for two hands (about 10), or if we

wanted to get fancy we could reshuffle with a deck minus the cards in play. These additions

would make the game closer to the standard game, but they would not increase our knowledge
of Super LOGO much, so we will let them pass.

142

We still have to write the procedure C H ECK.

TO C H ECK : HAN D : N : CARD :T : S

W H I L E : HAN D < > []

(MAKE "CA R D FI RST : H A N D

MAKE "HAN D B F : HA N D

CAR DTO N U M B ER : CAR D 9

MAKE "T RESU LT

I F : T=13 (MAKE "T 1frJ)
I F : T=12 (MAKE "T 1frJ)
I F : T=11 (MAKE "T 1frJ)
I F : T=14 (MAKE "T 11

MAKE "S 1)

MAKE "N : N + : T)

I F : N > 21 & : S =1

(MAKE "N : N - 1 9)

OUTPUT : N

E N D

CH ECK takes cards one by one off the list, and converts these cards to a number using
CARDTO N U M BER. The face cards are revalued to 10, and the ace is revalued to 1 1 and

flagged. The card values are totaled as they are processed.

MAKE "N : N + : T)

If the total is over 21 and the hand contains an ace, then the total is reduced by 10 which
corresponds to assigning the ace a value of 1 .

This completes the procedures for the game of blackjack, and it completes our discussion of

card games. However, it does not exhaust the possibilities. We encourage you to try other

simple games using the techniques illustrated in this chapter.

143

25. WORD GAMES

Word games provide a number of interesting possibilities for projects. The key to many word
games is a procedure for generating all combinations of a given number of letters. The

arrangements are generated by switching letters and then switching letters with other letters,
etc. While it seems like this should be recursive, it is not easy to come up with the recursive

procedure. We'll use this opportunity to show one way to attack such a problem. However, you

must realize that this is only a potentially useful suggestion, not a foolproof method for deal
ing with every recursive problem.

The first thing we realized was that we would need a procedure to switch two letters in a

word. Of course this is not the top-down process we advocated in Chapter 6, but that is a tech

nique, not a rule. The following procedure switches letters in positions P1 and P2 of the word
W. The assumption is that P1 comes before P2.

TO SW : W : P1 : P2 : L : J1 : J2 : T

MAKE '�1 " MAKE "J2 "

MAKE "L 1

REPEAT : P2 - 1

(I F : L< : P1 (

MAKE '�1 WO R D : J1 FIRST : W)

I F : L = : P1 (

MAKE "T FI RST : W)

I F : L> : P1 (

MAKE "J2 WOR D : J2 FIRST : W)

MAKE "W B F : W MAKE "L : L + 1)

MAKE '�1 WOR D WOR D WOR D WOR D

: J1 FI RST : W : J2 : T B F : W

OUTPUT : J1

E N D

To switch two letters within a word we have to divide the word into five pieces: the letters in

front of the first switchable charact'er (in J1), the first switchable character (in T), the letters

between the two switchable characters (in J2), the second switchable character (Fl RST : W

after the others are peeled off), and the rest of the word (B F : W). The procedure SW uses the

R EPEAT with I F conditions to peel off the first three pieces and then puts the new word
together with four WO R D operations.

Next we wrote procedures for the simple particular cases. The simplest case to handle is a two

letter word. There are two combinations, the original word and the word with two letters

switched.

TO PERM2 : WOR D

PRINT : WO R D

SW : WO R D 1 2

PR INT R ESULT

E N D

145

We can think of PERM2 as giving the combinations generated by switching letter two with
itself (that is, no change) and by switching letter 2 with letter l.

Some examples to try:

FT PERM2 "GO

FT PERM2 "AT

Three letter words are generated by switching letter 3 with itself and calling PERM2, then by

switching letter 3 with letter 2 and calling PERM2, and finally by switching letter 3 with

letter 1 and calling PERM2.

TO PERM3 : WO R D : N EW : N

MAKE " N EW : WO R D

MAKE " N 3

R EP EAT 3 (

EN D

I F : N< 3 (SW : N EW : N 3

MAKE " N EW R ESULT)

PERM2 : N EW

MAKE " N EW : WO R D

MAKE "N : N - 1)

You might check this with a three letter word to see that i t generates all the combinations of

the letters. (For example, FT PERM3 "CAT.)

Four letter combinations are generated by switching letter 4 with itself, with letter 3, with
letter 2, and with letter 1 , and in each case calling PERM3 after the switch.

TO PERM4 : WO R D : N EW : N

MAKE " N EW : WO R D

MAKE "N 4

R EP EAT 4 (

EN D

I F : N< 4 (SW : N EW : N 4

MAKE " N EW R ESULT)

PERM3 : N EW

MAKE " N EW : WO R D

MAKE "N : N - 1)

We can now write the recursive, general version by comparing PERM3 and P ERM4. There
are several places where the number 3 appears in P ERM3; the number 4 appears in the

equivalent positions in PERM4. We simply replace those numbers with a variable X.

146

TO PERM : WO R D : X : N EW : N

MAKE " N EW : WO R D

MAKE "N : X

REPEAT : X (

EN D

I F : N< : X (SW : N EW : N : X

MAKE " N EW RESULT)

I F : X= 3 (PERM2 : N EW)

ELSE (PERM : N EW (: X 1))

MAKE " N EW : WO R D

M A K E "N : N - 1)

We chose to keep the PERM2 as a special case for further applications, so the recursive call is
controlled by the I F ... ELSE combination. The new variable X is put early in the list of
variables to reduce the variable list on the call . (N EW and N are just local variables which do

not need to be given a value on the call).

To use this we must give it a word and the length of the word. The length can be obtained by
a procedure.

TO START : WO R D : N : N EW

FT

SIZE : WO R D MAKE "N R ESULT

PERM : WO R D : N : N EW

EN D

TO SIZE : WO R D : CO U NT

WH I L E : WO R D < > "

(MAKE "COUNT : CO U NT+ 1

MAKE "WO R D BL : WO R D)

OUTPUT : CO U NT

E N D

This i s now a complete set of procedures which will print out every combination of letters i n a
word you give it. When you try it out remember that the number of combinations becomes

large very fast. There are 120 combinations of 5 letters, 720 combinations of 6 letters,

5040 combinations of 7 letters, etc.

Now you may wonder what we could do with these procedures. One possibility is to make a
prompter for Scrabble. If you give it the letters you have, it will generate every possible combi

nation. You might want to modify PERM2 so that it prints only those combinations which

have particular letters in particular positions. We give another possible use. We'll modify
PERM2 so that it prints out every combination and allows the user to save any that are real

words in a list which is printed out at the end. One could let a child make the choices and
review the list at the end, or one could assign two turtles and let two players compete for find

ing the most words from a set of letters. We can save a lot of work by making the list of saved

words a global variable (we'll call it FIN D). Then we won't have to output it and pick it up as

we move back up through the recursive stack from PERM2. We need to replace START and

modify PER M2:

147

TO FIN DWO R D : WO R D : N : N EW

FT MAKE "FINAL []

SIZE : WOR D MAKE " N RESULT

PERM : WO R D : N : N EW

PRINT : FI NAL

EN D

TO PERM2 : WO R D : SAVE

P R I NT : WO R D

MAKE "SAVE RC

IF : SAVE = "Y (MAKE "F INAL SE

: F INAL : WO R D)

SW : WO R D 1 2 MAKE : WO R D R ESULT

P R I NT : WO R D

MAKE "SAVE RC

IF : SAVE = "Y (MAKE "FI NAL SE

: FI NAL : WO R D)

EN D

You might try these examples:

FIN DWOR D "REAL

FIN DWOR D "CATS

As usual there are a number of ways we could make this set of procedures better. The user
could be prompted to push the [YJ key to save a word. The current list of saved words could be
searched (using MEM BER as in Chapter 22) to prevent double saving of the same word, which
could happen if a letter occurs twice in the original word. As usual we will leave such changes

to you as projects.

148

26. DICE GAMES

Dice games provide further illustrations of list processing, and they provide a rich source of
interesting projects. Many games are based on throwing multiple dice. Some of them allow you

to select some dice for rethrowing, thus allowing you chances to improve the result. Instead of
picking a particular game, we will just give the dice throwing procedures. For purpose of illus

tration we will assume that the games use five dice and that the games allow rethrow of
selected dice two times. The main procedure is called DIC ETH ROW.

Note: You may want to M E R G E in the procedures that you created in Chapter 22 if they
are not already in memory. Many of them will be used in this chapter.

TO DICETH ROW : SET : R EDO

FT MAKE "SET []

REPEAT 5 (TH ROW

MAKE "SET SE : SET RESULT)

REPEAT 2

))

(PRINT : SET .

PR INT [LIST DISCAR DS]

MAKE "REDO RL

I F : REDO < > [] (

D IFFERENCE : REDO : SET

MAKE "SET RESU LT

LENGTH : SET MAKE "N 5 - RESULT

REPEAT : N (TH ROW

MAKE "SET SE : SET RESULT)

P R I NT SE [FI NAL HAN D] : SET

EN D

There are really no new techniques used in this procedure. The subprocedure TH ROW is used

to actually throw the dice; the subprocedure DIFFERENCE is used to eliminate the words in
the list R E DO from the words in SET. To function properly here DIFFERENCE must elimi

nate only one occurrence in SET, not every occurrence. LENGTH is a subprocedure given in

Chapter 22 which returns the length of a list.

TH ROW picks one number from a list of six.

TO TH ROW : N : CHOICE

MAKE "CHOICE [1 2 3 4 5 6)

P ICKRAN DOM : CHOICE 6

OUTPUT RESU LT

E N D

TH ROW uses the subprocedure PICKRAN DOM and its subprocedures P I C K and LENGTH

to do the actual random selection; we've seen PICK, PICK RAN DOM, and LENGTH in
Chapter 22.

149

DIFFERENCE is a new subprocedure which might be useful in a variety of projects.

TO DI FFERENCE : OUT : LONG

W H I L E : OUT <> []

(REMOVE (FI RST : OUT) : LONG

MAKE "OUT B F : OUT

MAKE "LONG R ESULT)

OUTPUT : LON G

E N D

The procedure works its way through the list of words to be eliminated. R EMOVE must take
a word and a l ist and remove the word from the list. The shortened l ist is returned as the

result, and the processed word is peeled off the list in O UT.

TO R EMOVE : WO R D : LIST : N

LENGTH : L IST MAKE "N R ESULT

R EP EAT : N (

)

I F : WO R D = FI RST : LIST

(OUTPUT B F : L IST)

ELSE (MAKE "LIST SE

B F : LIST FI RST : LIST)

PR INT SE : WO R D [NOT I N LIST]

O UTPUT : LIST

E N D

The critical part of R EMOVE i s the loop. The word i n WO R D i s compared with the first word

in LIST. If they are the same, the shortened list is output. If they are not the same, then the

words in the list are rotated to make another one first. If the l ist is rotated completely without
the procedure being completed with an O UTPUT command, then the word is not in the list. A

message indicating that fact is printed and LIST is returned unchanged.

When you try this set of procedures remember that the l ist of dice to be rethrown is a Super

LOGO list. Therefore, in typing the numbers remember to leave spaces between them.

Once all the required procedures are present, you can execute DIC ETH ROW simply by enter

ing " DICETH ROW" in RUN mode.

For our next example we use a variation of the word search game based on dice. The differ
ences are that the faces of the dice show letters instead of numbers and that the order in

which the individual dice are thrown matters too. The objective is to produce a randomly
selected and arranged square array of letters. The players are then to pick words from the
array using adjacent letters. Of course the computer cannot be programmed to decide if partic
ular combinations of letters form real English words, so we will just produce the square of

letters and leave the rules of the rest of the game to the players. We could pick a square of any

size, but 4x4 gives enough variety.

150

Each die shows six letters. The letters can be picked in any fashion, but we won't get much

variety if we make all the dice the same. Ideally the letters on the 16 dice should be selected

to correspond to the frequency of occurrence of those letters in English.

TO H I D EWOR D

FT

HATCH 1 DICE [N I D U T KJ

HATCH 2 DICE [R A C L T EJ

HATCH 3 DICE [M D R A N TJ

HATCH 4 DICE [N A G 0 S VJ

HATCH 5 DICE [0 C A S E UJ

HATCH 6 DICE [E M R D A CJ

HATCH 7 DICE [D I N S T WJ

HATCH 8 DICE [B T L Y 0 EJ

HATCH 9 DICE [L G W P U OJ

HATCH H J DICE [A H Y F I EJ

HATCH 11 D ICE [B I K 0 F RJ

HATCH 12 DICE [D V N Z E AJ

HATCH 13 DICE [J E B I R MJ

HATCH 14 DICE [0 P A N T HJ

HATCH 1 5 DICE [Y E G U K LJ

HATCH 16 DICE [L U P A T SJ

R EPEAT 2000 ()

R EPEAT 4 (PRINT [J

R EPEAT 4 (

EN D

PR INT CHAR (MAIL 255) ;

PR INT CHAR (32) ;))

This procedure uses multiple turtles to randomize the order i n which the dice are thrown. The
results of each throw will be sent as mail to this master procedure; the MAIL 255 reads them
in the order in which they are sent, regardless of the source. The R EPEAT 2000 () is a

delay to make sure that this master procedure does not start reading mail before all the other

turtles have sent their results. Without a delay, MAIL 255 might return 0 in some cases. Be

cause the letters are to be sent as mail from the other turtles, the letters must be sent in the

form of numbers. The obvious code for the letters is the ASCII code, and the CHAR function

converts these codes back into the letters. The last two R EPEAT statements cause the letters

to be printed out in a 4 x 4 square.

The above paragraph pretty well defines what DICE must do. It must select one entry from a
list at random and send the ASCII code of the letter selected as a message to turtle 0.

Note that DICE calls on the procedure NTOWOR D which we saw in Chapter 23.

151

TO DICE : L : A : N

MAKE "A []

R EP EAT 6 (
NTOWOR D ASCI I FI RST : L

MAKE "A SE : A R ESULT

MAKE "L B F : L)

R EP EAT RAN DOM sea ()

P ICKRAN DOM : A 6 SEN D CiJ R ESU LT

EN D

We first convert each letter to its corresponding ASCII number and convert that number to a

word. The list A then contains the ASCII numbers for the letters in the original list. Next we
put in a random delay

REPEAT RAN DOM 50 ()

so that it is unpredictable when each of the 16 turtles returns its message to the queue of

messages for turtle 0. Finally we pick a random entry off the list and send it as a message
(PIC KRAN DOM and its subprocedures are Chapter 22).

Note: H I D EWOR D takes a while to execute and display results. Do not worry if your
screen is blank for some moments after you have entered the command " H I DEWOR D"

in RUN mode.

With this example, we complete the tutorial on l ist processing. You may have noticed that in
the last several chapters we have not introduced much in the way of new Super LOGO fea
tures. Instead we have been making new combinations to solve a variety of problems. This is
because we have all the features we need at hand; solving new problems is mainly a process of

analyzing and ordering the solutions. That we will leave to you.

152

27. GRAB BAG

In this last chapter, we return to graphics and give a final set of sample programs which we

hope will give you ideas for your own projects. We have introduced all the features of Super

LOGO earlier, so we will give these without lengthy comments.

The first set is controlled by the procedure BON D.

TO BON D

WHILE 1

(COLORSET 1

E N D

CLEAR HT DELAY 1 000

TU N N EL

WALK

PAI NT)

TO WALK

SX 28 MAN2 ST DELAY 2000

R EP EAT 29

(MAN2 DELAY 1 00

HT SX XLOC M E + 3

MAN1 ST DELAY 1 00

)

MAN2

DELAY 800 SX XLOC M E 8

DELAY 500 SX XLOC M E + 16

DELAY 500 SX XLOC M E 16

DELAY 500 SX XLOC M E + 8

R EP EAT 3 (

HT DELAY 20

ST DELAY 30)

E N D

TO TU N N EL

PC 1 HT SX 60 SH 0

R EP EAT 18

E N D

(FD 20 RT 124 FD 56

BK 56 LT 104)

TO MAN1

SHAPE RRU FFFLLDFLFR

FFLFFR R R FLLFFR R F

LFLLLFFR RFLFRRFL

FFLFLFLFLFFLF R F F

FFLLFRRR FLFFRFL-

FFRRFF

EN D

153

154

TO MAN2
SHAPE RRUFFFLLDFF

FFLFFRRRFLLFFRRF
LFLLLFFRRFLFRRFL
FFLFLFLFLFFLFRFF -
FFLLFRRRFLFFFFFF
EN D

TO PAINT
PC 2 HT MAKE "X 1
REPEAT 3 (COLORSET g

DELAY ma COLORSET 1
DELAY 1 00)

SX 114 SY 1 02 SH g

REPEAT 13

)
EN D

(RAGGED : X
SX XLOC M E - 6

SY YLOC M E - 2
MAKE "X : X + 5

TO RAGGED : X
REPEAT 8

END

(FD :X RT 135 FD 8

BK 8 LT 90)

TO DELAY : TIME
REPEAT : TIME ()

END

The next set is for a younger audience.

TO CLOCK : DELAY : INT
CLEAR DRAW
CLOCK FACE
TIME : DELAY : I NT

EN D

TO CLOCKFACE
MAKE "NUMBER 12
SY 180 SX 1 04 SH 90
REPEAT 1 2

(F D 22 RT 90 FD 5 B K 5
PU BK 1 0 PRINT : NUMBER
FD 10 PD LT 90 FD 22
RT 30

MAKE "NUM BER : NUMBER + 1
I F : NUM BER > 1 2

(MAKE "NUM BER 1))
END

TO TIME : DELAY : I NTERVAL
HT
REPEAT 24

END

(MAKE "HR 0
WH ILE : H R< 12

(MAKE "MIN 0
WHILE : M IN<60

(DIGITAL : H R : M IN
PC 1 LITTLEHAN D : H R : M IN
PC 2 BIG HAN D : M IN
REPEAT : DELAY ()
PC 3 LITTLEHAN D : H R : M IN
BIG HAN D : MIN
MAKE "MIN

: M IN + : I NTERVAL)
MAKE "HR : H R + 1))

TO BIGHAND : M INUTE
SX 128 SY 96 SH 6•: M INUTE
LT 8 FD 60 RT 30 FD 18
RT 130 FD 18 RT 32 FD 60

END

155

TO LITTLEHAN D : HOUR : MINUTE
SX 128 SY 96
SH 30 • : HOUR + : M INUTE / 2
LT 32 FD 30 RT 60 FD 30
RT 120 FD 30 RT 60 FD 30

END

TO DIG ITAL : HOUR : M IN UTES
SX 0 SY 180 PRINT CHAR 32;
PR INT C HAR 32; PRINT C HAR 32;
SX 8• (: HOUR< = 9 & : HOUR<>0)
IF : HOUR (PRINT : HOUR)
ELSE (PRINT 12)
SX 16 PRINT ": SX 24
I F : M INUTES< 1 0 (PRINT "0 SX 32)
PRINT : M INUTES

EN D

Notice that you can set the interval to any number of clock minutes and that you can set the

speed with : DELAY. Try running

CLOCK 300 5

1 2
1 2 : so

:s

6

156

Next we give another colorful design.

TO SPI DER : X
COLORSET 1 B G g

REPEAT 36
(HATCH 1 OFFSET : X : C
MAKE "C : C + 1 RT 1 0)

VAN ISH
EN D

TO OFFSET : LENGTH : COLO R
P C : COLOR FD : LENGTH
LT 30 FD : LENGTH
RT 30 FD : LENGTH

EN D

Try this with

SPI DER 45

157

Next we give one which will remind you of the start of every science fiction film you've ever

seen. There is no picture in the manual for this one, as the effect is all in the motion.

158

TO SPACETRAVEL
DRAW
COLORSET 1 BG 0 HT
MAKE "X 4
WH ILE 1

(HATCH 1 STAR1
RT 67
HATCH 1 STAR2
RT 207
HATCH 1 STAR1
RT 114
HATCH 1 STAR2
RT 87
SETX XLOC ME + : X
I F N EAR 255>30

(MAKE "X : X * - 1
HATCH 1 PLAN ET)

)
VAN ISH

EN D

TO STAR1
HT
SHAPE FFRRFRRF
PU FD 2 ST
REPEAT 25 (FD 3)

EN D

TO STAR2
HT SHAPE F
PU FD 2 ST
REPEAT 35 (FD 3)

EN D

TO PLANET
HT
IF XLOC ME> 128 (SETH 75)
ELSE (SETH 300)
FD 10 SHAPE FFRFFRFFRFFRFFR

FFRFFRFF
PU FD 6 ST
REPEAT 20 (FD 4)

EN D

Here's one which shows the orbit of a moon around a planet and which makes use of multiple

turtles to simplify the mathematics.

TO ORBIT
COLORSET 1 BG 0
FD 1 0 RT 90 PC 3
REPEAT 8 (FD 6 RT 45 FD 6)
HOME
PU SETH 90 SY 164
MAKE "MOONPOS 0
SHAPE U -

FFFFFRRDFFRFFFFRFFFFRFFFF
RFFFFRFFFFRFFFFRFFFFRF

WH ILE 1

)
EN D

(REPEAT 4

)

(HATCH 1 MOON : MOON POS
REPEAT 6 ()
MAKE "MOONPOS : MOONPOS + 20

FD 1 0 RT 9

TO MOON : POS
HT PU RT : MOONPOS
FD 20
SHAPE UFFFFRRDFRFFRFFRFFR -

FFRFFRFFRFFRF
ST
REPEAT 9 ()
VANISH

END

159

As our last example, we give a final pretty pattern.

TO SAMPLE
COLORSET 1 DRAW BG 0
N POLY 8 12 3
SX 70 SY 72
N2POLY 8 48 12

EN D

TO N POLY : N : S : C
PC : C
REPEAT : N
(POLYGON : N : S
RT 360 / : N)

EN D

TO POLYGON : N : S
REPEAT : N (FD : S RT 360 / : N)

END

TO N2POLY : N : S1 : S2 : I
HT PU MAKE "I 1
WH ILE : I< = : N

(HATCH : I NPOLY : N : S2
(1 + : I - INT(: 112)•2)

FD : S1 RT 360 I : N
MAKE "I : 1 + 1

)
VAN ISH

END

Of course, you can try this set with other inputs than those given i n SAMPLE.

Well , we have now reached the point where you are on your own. We are sure that the exam

ples herein have just scratched the surface of what is possible. We hope that you have as much

enjoyment working out your own demonstration procedures as we have had in developing

these.

160

APPENDIX

LANGUAGE SUMMARY OF SUPER LOGO
FOR THE TANDY COLOR COMPUTER

STARTING LO GO

From plug-in:

ROM pack

With the computer power off, plug the Super LOGO cartridge into the

game slot. Then turn on the computer.

MODES IN SUPER LOGO

The Super LOGO system can be in one of four modes depending upon what the user is doing

at the time. A brief explanation of each is given here.

BREAK MODE

EDIT MODE

RUN MODE

is entered upon system startup and any time the user presses I BREAK I.
I BREAK I must be pressed twice to interrupt a procedure and enter

I BREAK I mode. In this mode, the user can load and/or save programs

from tape , make printed copies of programs, or enter EDIT or

RUN modes.

To get into this mode from BREAK mode, press the � key. In this mode,

the user can view, create or modify programs.

To get into this mode from BREAK mode, press the [BJ key. In this mode,

the user can enter turtle commands, call programs to be run, or enter

DOODLE mode.

DOODLE MODE Tu get into this mode, press the [@] key when you are in RUN mode.

In this mode, the user can use specially marked keys to doodle a picture

while creating a procedure.

161

BREAK MODE

BREAK mode is entered automatically upon starting Super LOGO, and can be entered from

any other mode by pressing the I BREAK I key at any time.

It is signified by the LOGO: prompt on the screen. The following single-letter commands may

be used in BREAK mode.

I SH I FT 1 1 CLEAR I clears the internal program area.

162

gets you into RUN mode

gets you into EDIT mode.

prints contents of internal program area on the printer connected to the
serial port.

prints same as p command, except that the a sends a line feed after a

return character.

allows loading of module into the internal program area. After you press

L, the computer prompts for a module designation with the message

LOAD:. The module is then read from the specified source into the inter

nal program area. To load from tape, enter T.

prompts for a module designation with the message M ERGE: . It then

reads from the specified source and appends the file to the end of the

lines currently in the program area. M ERG E works exactly like LOAD
except that the loaded file is added to the end of the current program

area.

prompts for the module name with the message SAVE: , then writes the

contents of the internal program area to the specified destination. To save

on tape, enter T.

Normally the entire program area is saved, but it is possible to specify

that only a portion of the program area be saved. To do so, use EDIT
mode to insert the special START and END markers in the program text.

The START marker consists of two > characters, such as > > inserted just

before the first character to be written out. The END marker consists of
two < characters, such as < < , just after the last character to be written.
Either or both markers may be present. If the START marker is not

present, then the save starts at the beginning of the program area. If the

END marker is not present, then the save stops at the end of the program

area. After the SAVE operation, it is up to the user to again use EDIT
mode to remove the START and END markers.

EDIT MODE

You can get into EDIT mode by pressing [f] when you are in BREAK mode. In EDIT mode,

one can edit the currently loaded modules. To start with a blank program area, press I SH IFT I
I CLEAR I in BREAK mode before pressing [f] .

The editor is very easy to use. It works on the principle that what you see is what you get.
The first line of text (if there is one) is displayed on the bottom line. To enter lines of text, just

type them on the screen. The cursor will always appear on the bottom line, but the text may
be moved up or down the screen at will . The following keys cause special actions to take place.

I ENTER I

OJ

[]]

EJ

EJ

I CLEAR I

ISH IFT I []]

ISHIFT I EJ

ISH I FT I EJ

moves the text up one line on the screen, or if already on last line, then
adds a new line to the text end.

moves the text up one line unless already on the last line.

moves the text down one line unless already on the first line.

moves the cursor left one character, unless already at the beginning of

line.

moves the cursor right one character, unless already at the line end.

moves to the top line of the text.

inserts a blank line in front of the current line if the cursor is in column

1 (the current line bumps down off the screen); if the cursor is not in

column 1, then the current line is split into two lines at the cursor
location.

deletes the character under the cursor and moves the remainder of the

line left to close the gap. If the l ine has no characters, then the blank

line is removed.

inserts a blank into the line at the cursor location by moving the

remainder of the line right one space. If the line is already full , then no

action takes place.

I SH IFT 1 1 CLEAR I deletes from the cursor position to the end of the line. If the cursor is in

column 1 , the entire line is removed from the text.

163

ISH IFT l [IJ

I BREAK I

is used in one of several ways to move quickly forward in the text. When

this key combination is pressed, the cursor moves to the very bottom line

on the screen. The user has three options of what to do next:

The first possibility is to press I SH I FT I ITJ again. This causes

the text lines to scroll up continuously. The text lines continue to
scroll until a key is pressed or until the last line of the text is
reached.

The second possibility is to enter a search string. The search

string may be up to 16 characters. Next press the l ENTER I key.

The text lines scroll up until a line containing the search string

is located, or until a key is pressed, or until the last line of text is
reached.

The third possibility is to just press the I ENTER I key again. This

produces another search for the search string most recently

entered.

Thus, to find the first occurrence of the word BLU E, the user
would press I SH I FT I [I] , and enter the word BLU E. Then when

the scrolling stops on a line containing BLUE, the user could find

the next occurrence by pressing I SH I FT I ITJ I ENTER I. This

could be repeated many times, if needed.

exits EDIT mode and returns to BREAK mode.

allows the next character to be one of the speeially marked single key

command codes. To enter a real @ press I@] twice.

In general, to enter new lines just type each line followed by I ENTER I. To modify a line,

move the cursor into place with the arrow keys, then modify text by typing the new text over

the old or by inserting or deleting characters as described above.

Note: If the editor quits accepting new text, then the program area is full .

The editor is general enough to be used not only for writing Super LOGO programs, but also

for simple word processing applications. After you edit a text file, the file may be printed or

saved on disk or cassette for later use. One such use would be writing documentation for mod

ules written in Super LOGO. Since the editor has a maximum line length of 32 characters, a

facility is provided to allow for printing of longer text lines on the printer. If a line is ended

with an @ character, then no RETURN is output at the end of the line. The result will be

that the following line on the screen will be printed on the same printer line.

164

INTERNAL PROGRAM AREA

Super LOGO procedures are entered in the EDIT mode. They can then be saved on disk or

tape and re-loaded later to be run again. The program area can have any number of Super

LOGO procedures in it. Each procedure begins with a TO statement. The TO statement must
be the first and only statement on a line. Other than that, any number of statements can

share a line; each one is separated from the previous one by one or more spaces. Each proce

dure should end with an EN D statement. The work area may contain many procedures at

once. It is a good idea to leave at least one blank line between procedures to improve readabil

ity. It is also a good idea to indent program lines to show the logical structure of the program.
The examples in this manual are all written in this manner. When a LOAD command is used

to read a text file into the program area, the previous contents of the program area are first

erased. When a M ERGE command is used to read a text file into the program area, it is
added to the end of the current lines in the program area. This provides a way to combine text

or procedures stored in different files.

TURTLE SPACE

The turtle is a creature that has a visible shape, a position and a heading. The position is

defined by an (X, Y) coordinate pair. The heading is defined by an angle from (J to 359. In

general, the turtle lives on the plane of the display screen. By executing turtle graphics com

mands, you can make the turtle move about and, if desired, leave a trail. Initially a turtle

starts at the home position. The home position is the approximate middle of the screen
(X= 128, Y=96). The turtle heading at home is zero degrees or straight up. The screen dimen

sion in the X direction (across the screen) goes from 0 at the left edge to 255 at the right edge.

The screen dimension in the Y direction (up and down) goes from 0 at the bottom to 191 at the
top. The lower left hand corner of the screen has coordinates ((J,0). The upper right corner has

coordinates (255, 191). The screen is normally a wrap-around space; that is, if the turtle runs
off the top of the screen it reappears on the bottom. If it runs off the left, it reappears on the

right, etc. In that sense the plane on which the turtle walks is infinite in any direction. The

turtle may be pointed in any direction from 0 to 359 degrees. Straight up is 0 degrees, and the

direction increases as the turtle rotates to the right, or in a clockwise direction.

SPLIT SCREEN

When you get into RUN mode, the screen is divided into a graphics area and a text area. The

text area is the bottom three l ines of the screen. The graphics area is the rest of the screen. In
split screen mode, neither the turtle nor any lines drawn by the turtle appear in the text area.

If the turtle is moved into this area, it becomes invisible until moved back into the graphics

area. The user can use the FULLSCREEN or DRAW command to change from split screen

mode to full screen mode. In full screen mode, text l ines still use the bottom lines of the screen

but the turtle and lines drawn are visible on the entire screen.

165

FULLTEXT SCREEN

FULLTEXT mode uses the entire screen for text only. It is entered by the FULLTEXT or FT
command and it is exited via the SPLITSCREEN, DRAW or FULLSCREEN commands. The

turtle is invisible in FULLTEXT mode, and lines are not drawn. The entire screen becomes the
text viewport. This mode is normally used for text manipulation programs that do not use

turtle graphics.

RUN MODE

You can get into RUN mode from the BREAK mode by pressing [[] . When RUN mode is en
tered, the screen is cleared and the turtle appears at the home position. A text window of

three lines exists at the bottom of the screen. The user enters turtle graphics commands or

calls Super LOGO procedures that have been entered earlie'r via the EDIT or DOODLE mode.

The user can enter any of the following commands directly in RUN mode. Any number of com

mands may be entered as long as they fit on one line. Once the I ENTER I key is pressed,

the commands are executed.

CO MMANDS WHICH CAN BE ENTERED DIRE CTLY IN RUN MODE

BACK BACKGRO U N D BAU D CLEAN CLEAR

CLEARSCREEN CLEARTEXT COLORS ET DOT DRAW

ECHO FENCE FORWARD FULLSCREEN FULLTEXT

HATCH HOME H IDETURTLE IF FALSE IFTRUE

LEFT NO ECHO NOT RACE NOW RAP PENCOLOR

PEN DOWN PEN ERASE PEN UP PRINT PRINTSCREEN

REPEAT RIGHT SEN D SETH EADING SETPEN

SETX SETY SHOWTURTLE SLOW SPLITSCREEN

TEST TEXT TRACE VAN ISH WRAP

Some of these commands may be abbreviated . Other SUPER LOGO commands may not be entered in

RUN mode; they may only be used within a Super LOGO procedure.

166

HOW TO EXECUTE A SUPER LOGO PROCEDURE FRO M RUN MO DE

To run a procedure entered via EDIT or DOODLE mode, enter the name of the procedure.

Follow the procedure name with any arguments to be passed to the procedure, then press

I ENTER I. Each argument is preceded by at least one space. An argument can be a number,

a variable, a word, a list or an expression. If an expression is used, it must be enclosed in

parentheses.

You can interrupt execution of a procedure at any time by pressing the I BREAK I key.
Pressing any key but I BREAK I causes execution to resume at the point where it paused;

pressing I BREAK I a second time leaves RUN mode and enters BREAK mode.

DOODLE MODE

You can enter DOODLE mode from RUN mode by pressing the !@] key. DOODLE mode allows
the creation of a turtle graphics procedure that will draw a shape without requiring that the

user even know how to read. In DOODLE mode, the screen displays an = sign. The user

enters a word (nonsense or otherwise) of at least one letter or number, and presses I ENTER I .
The word is the name of the procedure to be created as a picture is drawn. Now the numeric

keys (marked by the special keyboard overlay) can be used to enter turtle graphics commands.

Each time a key is pressed, the specified command is executed by the turtle. At the same time,

a procedure is created in the program area. This procedure can be viewed in EDIT mode.

When entering commands, you can use the left-arrow key (1- 1) to erase the last command. In

this case, the entire screen is erased and the shape is re-drawn without the last entered com
mand. To exit the DOODLE mode press I BREAK I . A procedure created in DOODLE mode

can be called out from RUN mode to re-draw the picture again . To do so, just enter the name

that was given when DOODLE mode was entered.

The DOODLE mode commands are:

[I] CLEAR
[§] LT 45

� HOME
[I] FD 1

SPECIAL CHARACTERS

[II PU
[ID FD 1 0

@] P D
[ID RT 1 5

[§] RT 45
[QJ LT 1 5

The characters [and] are not on the keyboard. However these characters are used in Super

LOGO. To enter a [, hold down I SHIFT I and press [§] , followed by I SHIFT I and then [ID .
Similarly, to enter] , hold down cgmti!EI] and press [§] followed by I SHI FT I and then [ID .
The square brackets, [and], must be used in conjuction with entering a LIST of words.

Another possible use of these characters is in the grouping of statements after an I F, ELSE,
REPEAT or WHILE. In these cases either parentheses or brackets may be used inter

changeably.

To enter a % character, hold down I SHIFT I and press [[] twice.

167

SUPER LOGO STATEMENTS AND COMMANDS

CONTROL STATEMENTS

In the statements below, the list of statements referred to may be enclosed in () or [] sym
bols. The () symbols provide compatibility with Color LOGO. The symbols [] provide com
patibility with other LOGOs.

EN D

ELSE (list of stmts)

FENCE

HATCH expr procname arglist

I F expr

(list of stmts)

I FTRU E (list of stmts)

168

This is the last statement in a procedure. Execution of an
EN D is equivalent to that of the STOP statement.

This statement can appear only after an IF statement. If
the expression value on the IF statement is false, then
the list of statements after ELSE is executed. Otherwise
it is skipped.

Same effect as NOWRAP.

Creates a new turtle. The turtle will start at the same
(X, Y) position as its parent (the turtle that HATCHed it)
and will be pointed in the same direction. It will have the
standard turtle shape. The expression value becomes the
new turtle's identification number (a number from 1 to
254). The procname specifies the procedure to be executed
by the new turtle. The arglist is optional; it specifies the
arguments to be passed to the procedure. The new turtle
runs simultaneously with the other active turtles.

The expression is evaluated. If the value is true (non-zero),
the list of statements in parentheses is executed. If it is
false (0), then the list of statements is skipped. The word
TH EN may be inserted after the expression if desired.
The IF statement may be followed by an ELSE state
ment. The list of statements denoted here and under
ELSE, I FTRU E, IFFALSE, REPEAT and WHILE can be
zero or more statements except the TO statement. There
may be multiple statements per line, and any number of
lines may be used.

If the value of the previous TEST statement is TRUE,
the list of statements is executed; otherwise it is skipped.

I FFALSE (list of stmts)

MAKE :var expr

or
MAKE "var expr

NOT RACE

NOW RAP

OUTPUT expr

PR INT expr U

procname arglist

If the value of the previous TEST statement is FALSE,
the list of statements is executed; otherwise it is skipped.

The value of the expression is assigned to the variable.

The value may be a number, word or list.

This turns off trace mode and causes normal execution to
resume.

Normally, the screen is in wrap mode. That is, a turtle
which runs off the screen will come back on the opposite
edge. Execution of the NOWRAP statement takes the
screen out of wrap mode. If a turtle then runs off the
screen, the program will terminate with an OUT OF
BOUN DS error message.

The expression value can be a number or word or list. The
value is saved as the function result; then control is
returned to the calling procedure in the same manner as
via the STOP statement. The calling procedure can use
the saved value via the RESULT function.

If the screen is in FULLTEXT mode, then PR INT acts
exactly like TEXT, as described below. Otherwise, the
expression value is displayed at the turtle location. The
turtle is not moved. The value may be a number, word or
list. Words in a list are separated by one space.

This is referred to as a CALL statement, even though it
does not contain the word CALL. To CALL any proce
dure, just code its name followed by any arguments to be
passed. If arguments are present, they are separated by
one or more spaces. Each argument may be a number,
variable, word, list, function reference or an expression
contained in parentheses. The argument's values are
passed to the parameter variables on the TO statement of
the called procedure. If there are fewer arguments than
there are parameters on the TO, then extra parameters
are set to '1.

If the called procedure executes a STOP, OUTPUT or
END, then control continues with the next statement
after the call statement.

169

REPEAT expr

(list of stmts)

SEN D expr expr

SLOW expr

STOP

TEST expr

TEXT expr lJ

TO procname parmlist

TRACE

170

The expression is evaluated; if it has a value less than or
equal to zero, then the list of statements is skipped.
Otherwise the list of statements is executed the specified
number of times.

A message is sent to the specified turtle. The first expres
sion value denotes the identification of the turtle to
which the message is sent. A value of 255 denotes that
the message is being sent to the first turtle that requests
its mail . Any other value denotes that the message can
be received only by a turtle with the specified identifica
tion (see also the MAIL function). The value of the sec

ond expression is the value sent to the other turtle.

The SLOW statement .causes execution to slow down so
that it can be watched more closely. The value of the
expression denotes how slow to go. A value of 127 is the
slowest speed. A value of 0 is full speed.

This terminates the execution of a procedure. Control is
returned to the calling procedure if there is one. If the
procedure was called from RUN mode, then control
returns to RUN mode. If the procedure was called by a
HATCH statement, then the associated turtle goes out of
existence.

The expression is evaluated to TRUE or FALSE. The
result can be used by the I FTRU E and I FFALSE state
ments.

The expression value is displayed in the text window,
which is either the bottom three lines if the screen is not
in FULLTEXT mode, or the entire screen if it is in
FU LLTEXT mode. If the optional semicolon is placed
after the expression, then no new line sequence is dis
played, and the cursor remains positioned after the last
character displayed.

This statement defines the start of a Super LOGO proce
dure. It must start in column 1 of a line and must be the
only statement on the line. The procname may be any
name of one or more letters. The parameters in the
parmlist may be 0 or more variables. Each one consists of
a colon (:), followed by any word of one or more letters.

This turns on TRACE mode. When in trace mode, execu
tion pauses prior to each statement. The statement is
displayed, and the user must press the I ENTER I key to
procede.

VAN ISH

WAIT expr

WHILE expr

(list of stmts)

WRAP

VANISH takes the current turtle out of existence.

This causes execution to pause for the number of tenths
of seconds indicated by the expression.

The expression is evaluated; if it is FALSE (0), then the
list of statements is skipped. If it is TRUE (non-zero),
then the list of statements is executed. After the list is
executed, control returns to the WHILE again. The
expression is then evaluated again. The list of state
ments is executed repeatedly until the expression is
found to be false.

Puts the screen back in wrap mode.

TURTLE GRAPHICS AND DISPLAY COMMANDS

STATEMENT

BACK expr

BACKGRO U N D expr

BAUD expr

CLEAN

ABBREVIATION REMARKS

BK

BG

moves the turtle backward the number of steps
denoted by the value of the expression. If the tur
tle's pen is down, then a line of the current pen
color is drawn as the turtle moves.

sets the background color of the screen to color 0,
1, 2 or 3. The default background color is 3.

This sets the serial port baud rate at location
$0095 in memory. It affects all data sent to the
printer. This includes program listings from
BREAK mode, and the PRINTSCREEN com
mand. The possible values are:

BAUD RATE expr VALUE

300 180

600 87

1200 41

2400 18

When the computer is first turned on, the BAU D
rate is set at 600 baud.

paints the entire display area the background
color without moving the turtle.

171

CLEARSCREEN CLEAR paints the entire display area the background
color and moves the current turtle to the home
position.

CLEARTEXT CT Erases the text window.

COLORSET expr selects color set 0 or 1 . For each set there are four
distinct colors. The default colorset is 0.

DOT Draws a one-pixel dot of the current pen color at
the current turtle location.

DRAW Erases the text window and places the screen in
FULLSCREEN mode.

ECHO turns on ECHO mode. When echo mode i s on,
then all characters displayed on the screen via
TEXT, PRINT or REQU EST commands are also
printed on the printer. If the printer is not ready,
then data is displayed only, not printed.

FORWARD expr FD moves the turtle forward the number of steps
denoted by the value of the expression. If the tur-
tle's pen is down, then a line of the current pen
color is drawn as the turtle moves.

FULLSCREEN FS places the screen in FULLSCREEN mode. This
allows the turtle and lines to be visible on the
entire screen.

FULLTEXT FT places the screen in FULLTEXT mode. This dis-
allows the drawing of any turtle graphics and uses
the entire screen as a text viewport.

H I DETURTLE HT makes the turtle invisible.

HOME sends the current turtle t o position (128,96) with
heading 0.

LEFT expr LT turns the turtle left (counter-clockwise) the speci-
fied number of degrees.

NOECHO turns off ECHO mode.

172

PAT

. . xxxx . . .
. XXXXXXXX .

. xxxxxx . . xx .

. xxxxxxxxx .
. XXXXXX .

. . . xxx

. . XXXXXX . . .

. xxxxxxxxxxxx .

. xxxxxxxxx
. xxxxxxxxxxxx . . .
. xxxxxxxxxxxxxx .

. xxxxxxxxxxxxxx .
. XXX XXX . .
. xxx xxx . .

. XXXXX . . xxxxx

PENCOLOR expr

PEN DOWN

PEN ERASE

PEN UP

PC

P D

P U

allows selection of the turtle pattern to be used.
The pattern is made up of 16 rows of 16 X or .
characters. When the turtle shape is set in this
way, the turtle does not visibly rotate on the
screen to reflect its current heading, but always
displays in the same orientation. The X and .
characters may be arranged as 16 lines of 16, or
any other way that adds up to 256 bits. Inter
vening spaces are ignored .

sets the pen color of the current turtle to color 0,

1, 2 or 3. The default color is 0. The actual
color depends on the current color set. If the pen
color is set to the same color as the screen back-
ground color, then the turtle pen will erase as it
moves.

tells the current turtle to draw a line as it moves
in response to FORWARD or BACK commands.

sets the current pen color to color 3 (background).

tells the current turtle not to draw a line as it
moves in response to FORWARD or BACK
commands.

173

PRINTSCREEN expr PS

RIGHT expr RT

SETHEADING expr SETH and SH

SETPEN state color

174

causes a printer screen dump to a dot matrix or
color printer. The screen dump produces a paper

copy of exactly what is shown on the display

screen. The expression value should be set depend

ing on the type of printer in use:

1-RS DMP 110 single wide or Line Printer 7

2-RS DMP 1 10 double wide

3-RS Color Printer with colors:
0-red

1-yellow

2-blue

3-black

4-RS Color Printer with colors:

0-green

1-purple

2-orange

3-white

On the Color Printer, characters displayed on the

screen are not clearly drawn on paper, but have

colored ghosts. The appropriate baud rate must

first have been set - either by the BAU D com

mand, or by setting location $0095 prior to
running LOGO. Since PRINTSCREEN can take

several minutes to complete, you can cancel it by

holding down the I BREAK I key while the printer
is printing. If the printer is not ready when this

command is issued, the command is ignored.

turns the turtle right (clockwise) the specified

number of degrees.

points the turtle in the direction specified by the

expression. The heading can be from 0 to 359

degrees. 0 degrees is straight up.

sets pen state (up = 0 or down < > 0) and
pen color.

SETX expr sx moves the turtle by changing its X coordinate to

the value specified. No line is drawn. The value

may be from 0 (left edge) to 255 (right edge).

SETY expr SY moves the turtle by changing the Y coordinate to

the value specified. No line is drawn. The value

may be from 0 (bottom) to 191 (top).

SHAPE shape list changes the shape of the current turtle to a shape
denoted by the shape list. See TURTLE SHAPE

LIST below.

SHOWTURTLE ST makes the turtle visible.

EXPRESSIONS

The expr designation above denotes a place in which an expression can be substituted. An

expression can be a number, a variable, a function reference, a word, a list or a combination of

these and the operators shown below.

Expressions may contain parentheses to denote the grouping of operations or sub-expressions.

NUMBERS

A number may have a value from -32768 to 32767 plus up to 2 decimal places. A decimal
point must be preceded by at least one digit. Examples of valid numbers are:

12 fa.53 12345.67 - 99.99

WO RDS

A word consists of a quote character ("), followed by from 1 to 13 letters or digits. Examples of

valid words are:

"HAPPY "X "ABC123DEF456

175

VARIABLES

A variable is a word which has a value associated with it. The value may be a word, a number
or a list. To refer to the variable name use the notation

"TOTAL

That is, a quote followed by the name. To refer to the value associated with a variable use the
notation

: TOTAL or TH ING TOTAL

That is, a colon followed by the name or the word TH ING followed by the name.

If a variable is given on a TO statement, then that variable is said to be a local variable. That
is, each time the procedure is invoked, a new storage location is assigned to the variable. Thus,
if a procedure is invoked recursively or by several turtles at once, then each invocation has its
own set of local variables which, though they have the same name, are kept distinct. There
may be any number of parameters on a TO statement; thus there may be any number of local
variables in a procedure.

If a variable is referenced in a procedure but is not on the TO statement for the procedure,
then the variable is said to be a global variable. There is only one storage location assigned to
each particular global variable. Thus all references to the global variable refer to the same
storage location even if the references are in different procedures. This provides a way of shar
ing information among procedures or among turtles.

LISTS

A l ist is a value consisting of any number of words stored in some given order. A list with no
entries is called a null l ist. Super LOGO restricts the entries in a list to being words, not
other lists. Examples of valid lists are:

[ABLE BAKER CHARLIE DOG]

ARITHMETIC O PE RATORS

[TH IS IS A LIST] []

These operators result in a number from -32768 to 32767 plus up to two places after the deci
mal point. Division uses only the integer part of the arguments and produces a result of
limited accuracy. The other arithmetic operators act on the integer and fraction and produce
more accurate results.

+ addition
* multiplication

176

- subtraction
I division

LOGICAL AND RELATIONAL O PERATO RS

These operators always result in TRUE or FALSE. Within an expression context a numeric 0
is considered FALSE and all other numbers are considered TRUE.

& logical AND ! logical OR

NOT logical negation

RELATIONAL OPERATO RS

< less than >greater than

= equal to < > not equal to

< = less than or equal to > = greater than or equal to

For relational operators the arguments may be numbers, words or lists. Two lists are consid

ered equal if they each contain the exact same list of words.

CONCATENATION O PERATO R

argl # arg2

argl and arg2 may be words or lists. The # operator combines the two arguments into one list

consisting of the elements in argl followed by the elements in arg2.

LITERALS

'C

FUNCTIONS

ABS arg

ASCI I arg

BUTFIRST list

BF list

A quote (') followed by one character is called a literal. It can be used
anywhere a number can be used. The value of a literal is the ASCII

value of the character. For example, 'A is equal to 65. A literal is par

ticularly useful in checking for values returned by the KEY function.

returns the absolute (positive) value of the argument.

arg is a word; this returns the number from 0 to 255 representing the

first character of the word.

returns a list consisting of all words in the argument list except the

first word.

177

BUTFIRST word

BF word

BUTLAST list

BL list

BUT LAST word

BL word

BUTTON arg

returns a word consisting of all letters in the argument word except the
first letter.

returns a list consisting of all words in the argument list except the
last word.

returns a word consisting of all letters in the argument word except the
last letter.

returns 0 if selected paddle button is not depressed, or 1 if it is
depressed. Arg= ff selects the right button, arg= 1 selects the left.

CHAR arg arg is a number from 0 to 255; this returns a one-letter word consisting
of the selected ASCII character.

COS arg returns the cosine of arg degrees

D IFFERENCE x y returns x-y

Fl RST list returns the first word in the list.

Fl RST word returns a word consisting of the first letter in the argument word.

FPUT word list returns a list consisting of the word followed by all the elements in the
list.

H EADING arg returns the heading (0 to 359) of the turtle with the specified identifica
tion (note HEADING ME gives your own direction). If no turtle exists
with the identification, then 0 is returned.

INT arg

KEY

LAST list

LAST word

LIST a b

LPUT word list

178

returns the greatest integer less than or equal to the argument value.

returns 0 if no key is depressed. If a key is depressed, then the value is
the ASCII value of the character.

returns the last word in the list.

returns a word consisting of the last letter in the argument word.

returns a l ist consisting of the input words

returns a list consisting of all the elements in the list followed by the
word.

MAI L arg

M E

N EAR arg

PADDLE arg

PRODUCT x y

QUOTIENT x y

RAN DOM arg

READCHAR

RC

READLIST

RL

R EQU EST

RO

RESU LT

returns a number value. MAIL is used to check for and receive mes
sages sent via the SEN D command. The argument of the MAI L func
tion denotes the source from which messages are to be received. If the
argument is 255, then mail is received from any turtle that has sent
mail addressed to the current turtle. If the argument is not 255, then it
denotes the identification of the turtle from which mail is to be
received. If more than one message is available for delivery, then the
oldest undelivered message is the one returned. If no messages are
available, then a value of zero is returned.

returns the identification of the current turtle. The main turtle is num
ber 0. The others are n umbered from 1 to 254.

returns a measure of the distance from the current turtle to the one
with the specified identification. The measure is equal to the number
of steps in the X direction plus the number of steps in the Y direction.
If no turtle exists with the specified identification, then the distance to
HOME is measured.

returns a value from 0 to 63 denoting the position of one of the game
paddles (joysticks). The arg is a value from 0 to 3. PADDLE 0

gives the up/down of the left paddle. PADDLE 1 gives the right/left of
the left paddle. PADDLE 2 gives the up/down of the right paddle. And
PADDLE 3 gives the right/left of the right paddle. For up/down, the
minimum value is up. For right/left the minimum value is left.

returns x•y

returns I NT(I NT(x) I I NT(y))

returns a random number from 0 to arg-1.

accepts one character from the keyboard and returns a word consisting
of that character. The character is not echoed to the screen when it is
typed.

synonym for R EQU EST

accepts a sentence (or list of words separated by spaces) from the
terminal and returns the result as a list. The words may be up to 13
characters each. The left arrow key may be used to backup and correct
errors only within individual words. The I ENTER I key is used to end
the list.

returns the value last saved by the O UTPUT statement. It will be the
value returned by a called procedure.

179

ROU N D arg

SENTENC E

SE a b

SI N arg

SUM x y

THING word

WO RD a b

XCOR

YCOR

XLOC arg

YLOC arg

180

a b

returns the nearest integer to the arg value.

a and b represent words or lists. This function returns a list consisting
of all elements of the input lists.

returns the sine of arg degrees

returns x + y

returns the value associated with the word

a and b must be words. This outputs a word consisting of the characters
in a followed by the characters in b.

returns the X coordinate of the current turtle

returns the Y coordinate of the current turtle

returns the X coordinate of the turtle with the specified identification
(note XLOC M E gives your own X coordinate). If no turtle exists with
the identification, then 128 is returned.

returns the Y coordinate of the turtle with the specified identification
(note YLOC M E gives your own Y coordinate). If no turtle exists with
the identification, then 92 is returned.

TURTLE SHAPE LIST

The SHAPE statement is used to assign a new shape to the current turtle. The shape of a tur
tle is made up of a pattern of dots on a grid. The shape list tells Super LOGO how to draw the
turtle pattern. The turtle shape is automatically rotated to face in the direction the turtle is
headed. Drawing the turtle shape is similar to using normal turtle graphics commands to
draw any shape. The difference is that the commands which make up the shape list are a res
tricted and simplified form of the normal turtle graphics commands. The commands allow a
step of one pixel (one square on a piece of graph paper) in any of the 8 possible directions. The
8 directions are: up, down, right, left, and the four diagonal directions. The one-letter com
mands that may be used in a shape list are shown below. The shape list can be any length. If
it runs over a line boundary, put a hyphen (-) at the end of the line, then continue in column
1 of the next line. The turtle shape drawing pen complements the affected pixels. That is, the
complement of a dot present is no dot present and vice versa. This allows a turtle to pass over
a picture without destroying the picture.

TURTLE SHAPE COMMAND MEANING

F

B

R

L

u

D

step forward one pixel; if the pen is down, complement the pixel .

step backward one pixel; if the pen is down, complement the pixel.

rotate right by 45 degrees.

rotate left by 45 degrees.

pick up the turtle shape pen; this pen is always assumed down at the start of a
shape list. This pen should not be confused with the turtle pen that draws when a
FORWARD or BACK turtle graphics statement is executed.

put the turtle shape pen down; if the pen was previously up, then putting it down
will cause the current pixel to be complemented.

MULTIPLE TURTLES

Normally, one turtle exists. The user can create additional turtles by using the HATCH state
ment. Each turtle then runs its procedures independently of the other turtles. The HATCH
statement assigns an identification number to each turtle. That number may be used by other
turtles to send mail or request location information about the turtle. The main turtle is
always number 0. Other turtles can have a number from 1 to 254. When a turtle other than
the main one exits from the procedure given it when it was HATCHed, it goes out of existence,
leaving behind only the lines it drew on the screen. The VANISH statement also causes the
turtle to go out of existence. The main turtle, in contrast, can only go out of existence by
executing a VAN ISH statement.

181

If the main turtle exits from the procedure given to it from RUN mode, it will return to RUN
mode where the user can then enter its next command or procedure to run. If when the main
turtle is in RUN mode there are other turtles, then the other turtles cease to move. Each time
the I ENTER I key is pressed, each of the turtles executes one program statement. This has the
effect of stepping the hatched turtles along at a controlled pace. A useful debugging method is
to HATCH a turtle from RUN mode and tell it to run the procedure which is to be tested.
Then the procedure is run by pressing I ENTER I repeatedly. If you enter a VANISH command,
then the main turtle will disappear and the hatched turtle will run at full speed.

ERROR MESSAGES FROM SUPER LOGO

In BREAK mode a ? is printed if any key other than a valid command letter is pressed. A
load or save command may also print a digit followed by a ?. ·These messages are:

1? memory error

2? tape checksum error (probably a bad tape or the volume not set correctly)

3? attempt to load a tape that is not a Super LOGO program

4? attempt to load a module that is too long for memory

In RUN mode there are several possible messages that may be issued. These messages
attempt to identify the error in the program, but remember that the message is only a guess
as to what is wrong. It is possible that the message does not exactly fit the problem. If the
statement in error is from within a procedure then the line in error is displayed after the
error message. After one of the following messages is displayed, the user must press a key to
continue.

MESSAGE

I DON'T KNOW H OW TO .. .

182

PROBABLE MEANING

" • . ?' is filled in with the name of what Super LOGO
thought was a procedure name to call ; but the proce
dure name is not found in the program area. If the
name is one which should be in the program area,
make sure that it is preceded by TO - not TO (zero).
Also make sure TO is in column 1. Check also that
the name is correctly spelled. If the name was not
supposed to be a procedure, then probably there is
something wrong with the immediately preceding
command.

I CAN'T FIG U R E OUT . . .

I DON'T KNOW H OW M U C H

"(" OR ")" NOT R I G H T

I CAN'T D O THAT I N THIS

MODE

MY M EMORY IS TOO FULL

OUT O F BOU N DS

I EXPECTED A . . . H ER E

I M PROPER LIST

" •• ?' is filled in with the word that caused the confu
sion. Super LOGO was attempting to compute the
value of an expression when it encountered the prob
lem. Possibly the syntax of the expression is in error;
or a colon is left out before a variable name; or a
function name is misspelled.

This message means that a command such as RIGHT

or FORWARD which should be followed by a number
is not followed by a number. Either an expression is
not present where one should be, or the very first
item in the expression is not val id.

A left parenthesis is not found as expected after an
I F, WH I L E or REPEAT expression or after an
ELSE. Or, unbalanced parentheses are detected.

A command other than one of the ones allowed (for
example, W H I L E), is entered directly from the key
board in RUN mode. Remember, some commands
may be executed only within a Super LOGO
procedure.

The internal program and work area is filled. This
will always happen eventually if a program is allowed
to do infinite recursion (call itself repeatedly forever).
In general , procedure calls, hatching turtles and
sending messages consume memory. The longer the
text in the program area, the less available memory
for these operations.

The screen has been placed in N OWRAP mode and a
turtle has run off the boundaries of the screen.

" •• ?' is WO R D, LIST or N U M BER and this indicates
that the improper type of data was given to a func
tion. For example, SENTENCE expects words or l ists
for arguments, not numbers.

A list within the program does not end before the end
of the l ine, or it contains a "[".

183

INDEX

A complement 91
concatenation 101, 119, 177

@, at end of line 43 condition 80
@, as literal character 43 control statements 1 1 , 79, 168
ABS 1 12, 177 convert number to word 129
adding procedures 42 cos 102, 178
address 99 count words 124
alphabetize 131 cursive 72
all points bulletin 99 cursor 15
AND 177 cursor position 16
animation 87, 91 CT 172
append 42, 162
ARC 38 D
argument 1 1 1
arithmetic 31 DECK 135
arithmetic drill 118 delete character 16, 163
arithmetic operators 176 delete to end of line 75, 164
arrow keys 163 delete line 41, 75, 164, 184
ASCII 98, 101, 129, 177 DIAMO N D 24
assignment 67 dice games 149

DIFFERENCE 149, 179
B DOODLE mode 55, 167

DOODLE mode used to
BACK 9, 171 design turtle shapes 89
backspace 56 DOT 38, 172
BACKGROU N D 33, 171 double space 43
BAUD 42, 171 DRAW 25, 165, 172
baud rate 42 DSKINI 41, 162
baud default 42 dynaturtles 102
B F 108, 177
BG 33, 171 E
B K 9, 1 7 1
B L 108, 178 ECHO 44, 172
blackjack 140 edit, DOODLE Mode 56
bottom-up 26 EDIT Mode 15, 163
break line 17 editor summary 17
BREAK Mode 6, 161 ELSE 83, 168
BUTFI RST 108, 109, 177 empty word 109
BUTLAST 108, 109, 178 end-loop recursion 45
BUTTON 178 E N D 19, 47, 168

erase, DOODLE Mode 56
c error messages 182

exchange letters 145
call 169 EXP 113
camera settings 43 exposure 43
cassette 41 expression 31, 175
cassette volume 41
CHAR 101, 1 19, 129, 178 F
circle 12, 38
CIRCLE 27 fast search 75
CLEAN 171 FD 6, 172
clear 7, 172 FENCE 168
clear memory 19 Fibonacci series 129
CLEARSCREEN 172 film 43
CLEARTEXT 172 find 75, 164
colon 29, 176 find again 75, 164
color 33 FI RST 108, 178
color printer 44 format 184
COLORSET 33, 172 FORWAR D 6, 172
combinations of letters 147 FPUT 1 10, 178
combining procedures 42 fractal 50
commands, RUN Mode 166 FRACTAL 51
commands, single key 55 FS 25, 172
COMPARE 130 FT 172
compare word 132 full screen 25

FULLSCREEN 25, 165, 172 ME 82
FULL TEXT 108, 166, 172 MEMBER 125
functions 1 12, 177 memory full 45

M ETAMORPH IZE 126
G merge 42, 162

message 99
game controller 102 mode 15, 161
games 97 mode map 15
games, dice 149 multiple turtles 77, 181
general message 99 multiprogramming 77
global find 164 multitasking 77, 181
global variable 30, 176

N
H

N EAR 80, 179
HATCH 77, 168 nesting 31, 100
heading 37 Newton's Law 102
H EADING 102, 178 NOECHO 44, 172
H I DETURTLE 9, 172 NOT 177
Hilbert curve 53 NOTRACE 169
Hofstader 45 NOWRAP 45, 169
home 37, 69, 165 number to word 129
H O M E 38, 172 numbers, Tange 175
horizontal size 1 1
HT 10, 172 0
hyphen 27, 88

OK Set 59
I One-Key Set 59

O R 177
IF 50, 168 order of operations 86
I F FALSE 1 18, 169 OUTPUT 1 12, 123, 169
I FTRUE 1 18, 169 overlay 55
indentation 21 overtype 16
I N SERT 131
insert character 16, 164 p
insert line 17, 163
INT 129, 178 PADDLE 103, 179
interrupt 86 paddle sensitivity 103

partial save 43
J-K-L PAT 95, 173

pause 86
KEY 98, 178 PC 33, 173
keys, DOODLE mode 55 PD 37, 173
LAST 108, 178 PENCOLOR 33, 173
LEFT 9, 172 PEN DOWN 37, 173
LENGTH 124 PEN ERASE 173
length, list 120 PEN UP 37, 173
lens opening 43 permutations of letters 147
level 25, 47 pictures 43
line feed 43, 162 PICK 123
LIST 178 PICKRAN DOM 124
lists 107, 176 pig latin 125
list length 120 photographs 43
literal 98, 177 polygons 1 1
load 41, 162 POLYSPI 45
local variable 30, 176 power 113
logical operators 177 primitives 164
LPUT 1 10, 1 19, 178 PRINT 60, 101, 109, 169
LT 9 printer 43, 162

printers 43
M printing text 44

P R I NTSCREEN 44, 175
MAIL 100, 179

procedure names 19
MAIL 255 101

PRO DUCT 179
mailbox 99

PS 43, 175
MAKE 67, 1 14, 169

PU 37, 173
marker 42, 163
master procedure 25
master turtle 77

Q

queue 101
quote mark 176
QUOTIENT 179

R

RAN DOM 85, 179
random sentences 127
random words 123
R EADCHAR 1 17 , 179
READ LIST 120, 179
RECTANGLE 19
recursion 45
RC 117, 179
relational operators 177
R EMOVE 150
REPEAT 11 , 170
R EQU EST 120, 179
R ESET 6
RES U LT 1 12, 179
return results 1 1 1
RIGHT 8, 175
R L 120, 179
ROUND 180
RQ 120, 179
RT 8, 175
RUN Mode 15, 19, 166

s

save 41 , 162
save, partial 42
scale 1 1
scan 17
screen coordinates 165
screen dimensions 165
screen dump 43
scroll 17, 25, 75, 164
scrunch 1 1
SE 1 10, 180
search 75, 164
search string 75
S E N D 99, 170
SEND 255 101
SEND, words 137
SENTENCE 1 10, 180
SETH 37, 175 -
SETH EADING 37, 175
SETPEN 175
SETX 37, 175
SETY 37, 175
SH 37, 175
SHAPE 87, 175, 181
SH I FT up-arrow, in EDIT Mode 75
SHOWTURTLE 10, 175
S H U FFLE 135
shutter speed 43
SI N 102, 180
single key commands 55

in DOODLE mode 167
in EDIT Mode 164

single space 43
single-step 49
SLOW 78, 170
sorting 130
spaces 101
split line 163
split screen 7, 25, 165

square brackets

square root
ST

start marker

starting Logo

stick figure

STOP

stop marker

stopping procedures

store

subprocedures
SUM

switch letters

sx
SY

synchronize

T

TEST

TEXT

text, printing

text window
T H I NG

thrust

TO

top-down

top-level

TRACE

transform list
TREE

truth value

turtle heading

turtle name

turtle number
turtle shape

U-V

VANISH

variable

variable, global

variable, local

variable names

vertical size

volume, on cassette recorder

w

WAIT

WALK

WAR

W H I L E

W O R D

word search
words
WRAP

wrap-around

X-Y-Z

X, Y proportions
XCOR

XLOC

YCOR

YLOC

109, 167
113
10 , 175
42, 163
161
90
48, 170
42, 163
86
41
23, 112
180
145
37, 175
37, 175
93

1 18, 170
170
43
25, 166
176, 180
102
170
26
26
50, 170
126
47, 81
48
9
77
77
87

79, 171
29, 176
30, 176
30, 176
67
1 1
41

70
92
136
80
109, 180
150
107, 175
46
7

1 1
60, 180
85, 180
60, 180
85, 180

	Front Cover
	Limited Warranty
	Title page
	Copyrights
	Foreword
	Table of Contents
	Introduction
	1. A Bit About Super LOGO
	2. Getting Started
	3. Repeat
	4. Modes and Editing
	5. Procedures
	6. Subprocedures
	7. Variables
	8. Colors
	9. Other Turtle Commands
	10. Saving, Loading, and Printing Your Super LOGO Procedures
	11. Recursion
	12. Doodle Mode - Procedures Without Typing
	13. One-Key Doodling
	14. Use of Doodle Mode and OK Set
	15. Additional Editing Features
	16. Multiple Turtles
	17. New Shapes For Turtles
	18. Turtle Games
	19. Word and List Operations
	20. Communication Between Procedures
	21. Interactive Procedures
	22. Playing With Words and Sentences
	23. Generating and Sorting Lists
	24. Card Games
	25. Word Games
	26. Dice Games
	27. Grab Bag
	Appendix: Language Summary
	Starting LOGO
	Modes In Super LOGO
	Break Mode
	Edit Mode
	Internal Program Area
	Turtle Space
	Split Screen
	Fulltext Screen
	Run Mode
	Commands Which Can Be Entered Directly In Run Mode
	How to Execute A Super LOGO Procedure From Run Mode
	Doodle Mode
	Special Characters
	Super Logo Statement And Commands
	Control Statements
	Turtle Graphics And Display Commands
	Expressions
	Numbers
	Words
	Variables
	Lists
	Arithmetic Operators
	Logical and Relational Operators
	Relational Operators
	Concatenation Operator
	Literals
	Functions
	Turtle Shape List
	Multiple Turtles

	Error Messages From Super LOGO

	Index
	Back Cover

UU<�ƒTO RECTANGLE FD 50 RT 90 FD 30 RT 90 FD 50 RT 90 FD 30ENDTO BOX FD 50 RT 90 FD 30 RT 90 FD 50 RT 90 FD 30END |UU<ÿ�ÿUU

UU<�ÿTO FOUR REPEAT 4 (BOX)ENDTO MANY REPEAT 10 (FOUR RT 9)ENDTO DIAMOND FD 50 LT 45 FD 50 LT 135 FD 50 LT 45 FD 50ENDTO DIAMOND2 REPEAT 29 (DIAMOND RT 40)ENDTO PATTERN REPEAT 6 (SQUARE-CIRCLE RT 60)ENDTO SQUARE-CIRCLE CIRCLE SQU�UU<� AREENDTO CIRCLE REPEAT 180 (FD 1 RT 2)ENDTO SQUARE REPEAT 4 (FD 28 RT 90 FD 28)ENDTO BOX FD 50 RT 90 FD 30 RT 90 FD 50 RT 90 FD 30ENDtUU<ÿ�ÿUU

UU<�ÿTO DESIGN :LENGTH :N REPEAT :N (SQUARE :LENGTH RT 360/:N)ENDTO SQUARE :N REPEAT 4 (FD :N RT 90)ENDTO SQUIGGLE FD 7 REPEAT 8 (FD 4 RT 45) FD 7 REPEAT 8 (FD 4 LT 45) FD 7ENDTO SQUIGGLE8 :SIDE :ANGLE REPEâUU<�‰AT 360/:ANGLE (REPEAT :SIDE (SQUIGGLE) RT :ANGLE) REPEAT 360/:ANGLE (REPEAT :SIDE (SQUIGGLE) LT :ANGLE)END �UU<ÿ�ÿUU

UU<�ÿTO FOUR REPEAT 2 (PC 1 BOX PC 2 BOX)ENDTO MANY :N REPEAT :N (FOUR RT 90/:N)ENDTO BOX PC 1 FD 50 RT 90 PC 2 FD 30 RT 90 FD 50 RT 90 PC 1 FD 30ENDTO FOUR2 REPEAT 4 (BOX)ENDTO MANY2 :N REPEAT 2*:N/3 (FOUR2 RT 90/:fUU<��N)END~UU<ÿ�ÿUU

UU<�ÿTO BOX PU FD 50 RT 90 PD PC 2 FD 30 RT 90 FD 50 RT 90 PU FD 30ENDTO DOUBLE SETX 60 MANY 90 SETX 180 MANY 90ENDTO DOUBLE HT SX 60 MANY 90 SX 180 SH 0 MANY 90ENDTO MANY :N REPEAT 2 * :N/3 (FOUR RT 90/:N)ÜUU<�ÿENDTO FOUR REPEAT 4 (BOX)ENDTO ARC :X :Y :RADIUS :DEGREE PU SX :X SY :Y REPEAT :DEGREE (FD :RADIUS DOT BK :RADIUS RT 1)ENDTO KIRSTIN CLEAR SX 60 SY 80 REPEAT 18 (PENT 20 RT 20) SX 95 SY 82 REPEAT 9 (PENT 15 RT 40)ENDTOÆUU<�8 PENT :SIDE REPEAT 5 (FD :SIDE LT 72) FD :SIDEEND‰UU<ÿ�ÿUU

UU<�ÿTO CIRCLE FD 1 LT 2 CIRCLEENDTO POLYSPI :SIZE :ANGLE :STEP FD :SIZE RT :ANGLE POLYSPI (:SIZE+:STEP) :ANGLE :STEPENDTO TREE :N IF :N < 2 (STOP) FD :N RT 15 TREE (3*:N/4) LT 30 TREE (3*:N/4) RT 15 BK :NENDTO FRACTAL :üUU<�ÿN IF :N < 15 (FD :N STOP) FRACTAL (:N/3) LT 60 FRACTAL (:N/3) RT 120 FRACTAL (:N/3) LT 60 FRACTAL (:N/3)ENDTO FLAKE :N CLEAR REPEAT 6 (FRACTAL :N RT 60)ENDTO FLAKE2 :N CLEAR SX 50 SY 40 REPEAT 3 (FRACTAL2 :N RT 120)ENDïUU<�ÿTO FRACTAL2 :N IF :N < 9 (FD :N/4 RT 80 FD :N LT 160 FD :N RT 80 FD :N/4 STOP) FRACTAL2 (:N/3) LT 60 FRACTAL2 (:N/3) RT 120 FRACTAL2 (:N/3) LT 60 FRACTAL2 (:N/3)ENDTO FLAKE3 :N CLEAR SX 50 SY 40 REPEAT 3 (FRACTALšUU<�ÿ3 :N RT 120)ENDTO FRACTAL3 :N IF :N < 9 (FD :N/4 RT 80 FD 2*:N LT 160 FD 2*:N RT 80 FD :N/4 STOP) FRACTAL3 (:N/3) LT 60 FRACTAL3 (:N/3) RT 120 FRACTAL3 (:N/3) LT 60 FRACTAL3 (:N/3)ENDTO FOO :SIZE :LEVEL :PARITY HT ÔUU<�ÿ IF :LEVEL = 0 (STOP) LT :PARITY*90 FOO :SIZE (:LEVEL-1) (:PARITY*-1) FD :SIZE RT :PARITY*90 FOO :SIZE (:LEVEL-1) :PARITY FD :SIZE FOO :SIZE (:LEVEL-1) :PARITY RT :PARITY*90 FD :SIZE FOO :SIZE (:LEVEL-1) (:PARITY*-1) LT :PAR�UU<��ITY*90END äUU<ÿ�ÿUU

UU<�ÿTO 1 CLEARENDTO 2 HOMEENDTO 3 PUENDTO 4 PDENDTO 5 RT 45ENDTO 6 RT 45ENDTO 7 FD 1ENDTO 8 FD 10ENDTO 9 RT 15ENDTO 10 LT 15ENDTO T PC 1 T1ENDTO TT PC 3 T1ENDTO T1 SH 0 HT PD FD 8 RT 150 FD 1EUU<�ÿ5 TRI 15 SH 305 FD 8 SH 0 PU STENDTO TRI :SIDE IF :SIDE < 2 (STOP) REPEAT 3 (RT 120 FD :SIDE) TRI (:SIDE-2)ENDTO QUICKT REPEAT 3 (FD 15 RT 120)ENDTO B PC 2 B1ENDTO BB PC 3 B1ENDTO B1 SH 45 HT PD FD 10 RT 45 BOX 14 �UU<�óRT 135 FD 10 SH 0 PU STENDTO BOX :SIDE IF :SIDE < 2 (STOP) REPEAT 4 (RT 90 FD :SIDE) BOX (:SIDE-1)ENDTO C PC 0 C1ENDTO CC PC 3 C1ENDTO C1 SH 0 HT PD REPEAT 60 (FD 8 BK 8 RT 6) PU STENDTO 77 PC 3 BK 1ENDÆUU<ÿ�ÿUU

UU<�ÿTO DOTS CLEAR HT RT 90 SX 5 SY 50 LINE-OF-DOTS SX 5 SY 50 LINE-OF-DOTSENDTO LINE-OF-DOTS REPEAT 12 (BIGDOT FD 20)ENDTO BIGDOT FD 1 PD RT 90 FD 1 REPEAT 4 (RT 90 FD 2) PU BK 1 LT 90 BK 1ENDTO PATTERN1 DOTS SX 5 SY 150 RaUU<�ÿEPEAT 6 (PD FD 20 PU FD 20) SX 5 SY 50 ST PDENDTO LINE-OF-DOTS REPEAT 12 (BIGDOT FD 20)ENDTO PATTERN2 DOTS SX 5 SY 150 REPEAT 6 (PD LT 60 FD 40 RT 120 FD 40 LT 60) SX 5 SY 55 LT 90 FD 10 RT 90 FD 40 RT 90 ‚UU<�ÿFD 10 BK 10 LT 90 STENDTO PATTERN3 MAKE "X 0 MAKE "Y 50 CLEAR HT REPEAT 10 (REPEAT 7 (SX :X SY :Y SQUARE MAKE "Y :Y+20) MAKE "X :X+20 MAKE "Y 50) MAKE "X 11 MAKE "Y 58 REPEAT 4 (REPEAT 5 (SX :X SY :¯UU<�ÿY T MAKE "X :X+40) MAKE "X 11 MAKE "Y :Y+40) SX 31 SY 158 STENDTO T SH 0 HT PD FD 8 RT 150 FD 15 TRI 15 SH 305 FD 8 SH 0 PU STENDTO TRI :SIDE IF :SIDE < 2 (STOP) REPEAT 3 (RT 120 FD :SIDE) TRI (:SIDE-2)ENDTO SQUAªUU<�ÿRE REPEAT 4 (FD 20 RT 90)ENDTO PATTERN4 CLEAR RT 90 REPEAT 2 (FD 60 SX 128 SY 96 RT 45) HOMEENDTO PATTERN5 CLEAR LINES 60 128 10 HOMEENDTO LINES :LENGTH :X :STEP IF :LENGTH = 0 (STOP) SX :X SY 36 SH 0 FD :LENGTH RT 9IUU<�ÿ0 FD :LENGTH LINES (:LENGTH - :STEP) (:X + :STEP) :STEPENDTO DRAWF CLEAR SX 50 SY 146 RT 180 FD 50 SX 50 SY 146 LT 90 FD 30 SX 50 SY 126 FD 20 HOMEENDTO DRAWF2 CLEAR SX 50 SY 146 RT 180 PC 1 FD 50 WAIT 30 SX 50 SY 14LUU<�ÿ6 LT 90 PC 2 FD 30 SX 50 SY 126 FD 20 WAIT 30 HOMEENDTO DOTM CLEAR BIGDOT FD 60 BIGDOT RT 135 FD 30 LT 45 BIGDOT LT 45 FD 30 RT 45 BIGDOT RT 90 FD 60 BIGDOT HOMEENDTO PATTERN6 RT 180 SX 70 FD 50 RT 90 FD 20 RT 90 FD 20 LT 9«UU<�©0 FD 10 RT 90 FD 10 LT 90 FD 10 LT 90 FD 10 RT 90 FD 10 LT 90 FD 20 RT 90 FD 20 RT 90 FD 50 RT 90 FD 70 SX 198 SY 96 SH 180 FD 50 RT 90 FD 70 RT 90 FD 50END7UU<ÿ�ÿUU

UU<�ÿTO BOX :SIDE :X :Y SX :X SY :Y REPEAT 4 (FD :SIDE RT 90)ENDTO CIRCLE :SIDE :X :Y SX :X SY :Y REPEAT 20 (FD :SIDE RT 18)ENDTO TEST1 SLOW 30 HATCH 1 BOX 50 30 60 HATCH 2 BOX 40 180 90 HATCH 3 BOX 60 100 90 BOX 20 150 120ENDTO TESTjUU<�ÿ2 HATCH 1 BOX 50 30 60 HATCH 2 BOX 40 180 90 HATCH 3 BOX 60 100 20 HATCH 4 CIRCLE 3 30 140 HATCH 5 CIRCLE 4 180 120 CIRCLE 5 90 90END TO ABSTRACT CLEAR DRAW COLORSET 1 RT 25 HATCH 1 PATH 1 4 30 RT 43 HATCH 2 PATH 2 4 20 RT 67 ¢UU<�ÿ HATCH 3 PATH 3 4 40 RT 105 HATCH 4 PATH 0 4 10 VANISHENDTO PATH :COLOR :I :L HT PC :COLOR WHILE 1 = 1 (FD :L RT 90 PU FD :I RT 90 PD FD :L LT 90 PU FD :I LT 90 PD IF NEAR 255 > 150 (RT 108))ENDTO MIXIT DRÃUU<�ÿAW COLORSET 1 BG 0 HATCH 1 SWEEP 1 3 60 30 0 HATCH 2 SWEEP 2 3 60 160 90 HATCH 3 SWEEP 3 3 190 160 180 HATCH 4 SWEEP 2 3 190 30 270 VANISHENDTO SWEEP :COL :INT :X :Y :H REPEAT 12 (HT PC :COL SX :X SY :Y SH :H REPEAT 92/:¢UU<�ÿINT (PD FD 100 PU BK 100 RT :INT)) MAKE "COL :COL+1ENDTO TREE1 :S IF ME = 0 (CLEAR DRAW SETY 0) IF :S > 6 (FD :S LT 30 HATCH 1 TREE1 (3*:S/4) RT 60 HATCH 2 TREE1 (3*:S/4) VANISH)ENDTO TREE2 :S IF âUU<�ÿME = 0 (CLEAR DRAW SY 0) IF :S > 6 (FD :S LT 30 HATCH 1 TREE2 (3*:S/4) RT 60 HATCH 2 TREE2 (3*:S/4) VANISH) ELSE (REPEAT 500 ())ENDTO FIR1 :N :X :Y HT SX :X SY :Y PC 0 BK :N/2 RT 90 FD :N/4 LT 90 FD 6+:N/2 RT 9ŸUU<�ÿ0 FIR11 :N :XENDTO FIR11 :N :X PC 1 RT 15 FD :N LT 129 FD 3*:N WHILE XLOC ME > :X (FD 2)ENDTO FIR2 :N :X :Y HT SX :X SY :Y PC 0 BK :N/2 LT 90 FD :N/4 RT 90 FD 6+:N/2 LT 90 FIR22 :N :XENDTO FIR22 :N :X PC 1 LT 15 FD :N RT 129 FwUU<�ÿD 3*:N WHILE XLOC ME < :X (FD 2)ENDTO FIR :N :X :Y :T HT HATCH :T FIR1 :N :X :Y HATCH :T+1 FIR2 :N :X :Y IF :N > 20 (STOP) FIR (:N+1) :X :Y :TENDTO EVERGREEN :TREES DRAW HT WHILE :TREES > 0 (MAKE "X RANDOM 200 + 20 MAKE "Y RxUU<�ÿANDOM 100 + 30 MAKE "T :TREES * 3 HATCH :T FIR 2 :X :Y :T REPEAT 30 () MAKE "TREES :TREES - 1) VANISHENDTO FOREST DRAW BACKGROUND 1 SX 236 REPEAT 3 (SY 10 SX XLOC ME + 40 HATCH 1 TREE1 20 SX XLOC ME + 40 ÕUU<�ÿHATCH 2 TREE1 30) CLOUDSENDTO CLOUD :SIZE :X SETHEADING 90 REPEAT (:SIZE/6) (MAKE "X RANDOM (:SIZE/2) PU FD :X/2 PD FD :SIZE-:X PU BK :SIZE-:X/2 SY YLOC ME-2)ENDTO CLOUDS PC 2 SX 10 SY 180 CLOUD 60 SX 100 SY 16�UU<�24 CLOUD 30 SX 190 SY 176 CLOUD 65END ÄUU<ÿ�ÿUU

UU<�ÿTO NEW SHAPE FFFFFFFLLLFFRRRR-UFFRRFDFENDTO PLANE SHAPE RRFFFLLFLLFRFR-FFFFFFRRFFFFFFF-LFLLFLFFFFFFFRRF-FLFLLFLFFRRFFFF-FFFLFLLFLFFFFFF-FRRFFFFFFRFRFLL-FLLFFENDTO ONE SHAPE LLULLFFFFDFFRRRFFFFFF-RRFFFFFFLLFFUBBLLFFFFFFRFD-FFFFFFFFRRFFúUU<�ÿFFLFFUBBRBBBB-RFDFFFLLFFUBBLLFFFFRFD-FFLFRFFRFRFFRFRFFRFRFENDTO TWO SHAPE LLURRFFDBBLLFFFFFFFRRR-FFFRRRFFFFLFFUBBRBBBBRFFFRFD-FFFFFFFFFRRRFFFFLLFF-UBBLLFFFFLLFDFFFLLFU-BLLFFFFLFDFLFRFFRFR-FFRFRFFRFRFENDTO WALK HT PU SX 100 RT 90 REPEAT æUU<�ÿ100 (ONE ST WAITA 100 HT FD 6 TWO ST WAITA 100 HT FD 6)ENDTO WAITA :T REPEAT :T ()ENDTO WALK-AROUND DRAW HT PU SX 100 RT 90 REPEAT 100 (ONE ST WAITA 100 HT RT 15 FD 6 TWO ST WAITA 100 HT RT 15 FD 6)ENDTO ?UU<�ÿWALK1 HT PU SX 100 RT 90 REPEAT 100 (HATCH 1 WALKA REPEAT 8 () HT FD 6 HATCH 1 WALKB REPEAT 8 () HT FD 6)ENDTO WALKA HT ONE ST REPEAT 10 ()ENDTO WALKB HT TWO ST REPEAT 10 ()ENDTO TURTLE1 SHAPE LL-BRRFRRFúUU<�ÿLLFRRFLLFFFFLBBBRFL-FFFRFLBBBUFFFRFDFFFFFRFFF-LFRBBBLFRFFFUBBBLFDFFFFFFFF-LLFFLFFLLFFRBLBLLFRFRRFFFFF-RFRFLFFFLFFFFFFFFLFFFLFRFENDTO TURTLE2 SHAPE LL-BRRFRRFLLFRRFLLFFFFRRFFUBB-LLFDRRFFFLLFFUBLLFDFFRRFFFFFFF-RRFFUFLLFDLLFFFRRFRRFFFLLFUB-LLFFF‘UU<�ÿRRFDFFFFFFF-LLFFLFFLLFFRBLBLLFRFRRFFFFF-RFRFLFFFLFFFFFFFFLFFFLFRFENDTO CRAWL :T :X :Y HT PU SX :X SY :Y RT 90 REPEAT 100 (HATCH :T+1 T1 REPEAT 8 () HT FD 2 HATCH 1 T2 REPEAT 8 () HT FD 2 IF XLOC ME > 230 (VANISH) ˜UU<�ÿ)ENDTO T1 HT TURTLE1 ST REPEAT 10 ()ENDTO T2 HT TURTLE2 ST REPEAT 10 ()ENDTO HERD CLEAR DRAW HT MAKE "I 0 MAKE "T 1 REPEAT 20 (IF :I < 10 (MAKE "I :I+1) MAKE "J 1 WHILE :J < :I (HATCH :T CRAWL :T 0 (µUU<�ÿ:J*18) MAKE "T :T+2 MAKE "J :J+1) REPEAT 900 ())ENDTO SPACEPERSON PAT.....................XXXX..........XXXXXXXX.......XXXXXX..XX.......XXXXXXXXX........XXXXXX...........XXX............XXXXXX.........XXXXXXXXXXXX...XcUU<�¤XXXXXXXX......XXXXXXXXXXXX....XXXXXXXXXXXXXX..XXXXXXXXXXXXXX...XXX......XXX....XXX......XXX....XXXXX....XXXXX PU RT 90 SETX 1 REPEAT 20 (FD 5 WAIT 3)ENDtUU<ÿ�ÿUU

UU<�ÿTO CATCHEM CLEAR DRAW HATCH 1 GETKEYS HATCH 2 RUNNER 20 HATCH 3 CHASER SCOREKEEPER 0ENDTO GETKEYS :X HT WHILE 1 = 1 (MAKE "X KEY IF :X = 'S (SEND 2 1) IF :X = 'D (SEND 2 45) IF :X = 'A (SEND 2 315) IF :X = 'K (SEND 3 /UU<�ÿ1) IF :X = 'L (SEND 3 45) IF :X = 'J (SEND 3 315))ENDTO RUNNER :X PU SX :X SHAPE FFFFFFFFUBBBRRFD-FFUBBBDBBB WHILE 1 = 1 (MAKE "X MAIL 1 IF :X (IF :X=1 (FD 8) ELSE (RT :X)) §UU<�ÿ)ENDTO CHASER :X WHILE 1 = 1 (HOME PU WHILE NEAR 2 > 12 (MAKE :X MAIL 1 IF :X (IF :X=1 (FD 16) ELSE (RT :X))) SEND 0 1)ENDTO SCOREKEEPER :S HT SõUU<�ÿX 200 SY 180 WHILE 1 = 1 (PRINT CHAR(32)#CHAR(32) PRINT :S WHILE MAIL 255 = 0 () MAKE "S :S+1)ENDTO RUNNER2 :X PU SX :X SHAPE FFFFFFFFUBBBRRFD-FFUBBBDBBB WHILE 1 = 1 (MAKE "X MAIL 1 IF :X = 1 (MAKE "VX :VX +RUU<�ÿ SIN HEADING ME MAKE "VY :VY + COS HEADING ME) IF :X = 45 (RT 45) IF :X = 315 (LT 45) SX XCOR + :VX SY YCOR + :VY)ENDTO REBOUND CLEAR HT HATCH 2 PADDLE1 HATCH 3 PADDLE2 HATCH 6 SCOREK„UU<�ÿEEP TRIGGERENDTO PADDLE1 HT SX 60 SY 180 TURN 0ENDTO PADDLE2 HT SX 180 SY 12 TURN 2ENDTO TURN :P :X WHILE 1 = 1 (MAKE "X PADDLE :P/2 LINE 3 SH 45 + 3*:X LINE 0 WHILE PADDLE :P/2 = :X ())ENDTO LINE :COLOR P’UU<�ÿC :COLOR FD 15 BK 15 BK 15 FD 15ENDTO TRIGGER HT HATCH 4 BALL VANISHENDTO BALL LAUNCHBALL WHILE MAIL 5 = 0 (STARTSPOT HATCH 5 TARGET REPEAT 45 (FD 10 IF NEAR 2 < 20 (FD 10 LT (HEADING 4 - HEADIUUU<�ÿNG 2+180)*2 FD 35) IF NEAR 3 < 25 (FD 10 LT (HEADING 4 - HEADING 3)*2 FD 45))) TRIGGERENDTO LAUNCHBALL HT PUPAT..XXXX..........�UU<�ÿ.XXXXXX.........XXXXXXXX........XXXXXXXX........XXXXXXXX........XXXXXXXX.........XXXXXX...........XXXX.. MAKE :Y RANDOM 60 + 160ENDTO STARTSPOT HT SH :Y SX 60 SY 180 REwUU<�ÿPEAT 6 (FD 10) WHILE XLOC 4>7 & YLOC 4>7 (FD 10) RT 180 ST FD 10ENDTO TARGET SH 0 HT SX RANDOM 100 + 135 SY RANDOM 40 + 120 SHAPE URRFFFFFFFFFLLLDFFFF-FLFFFFFFFFFLFFFFF ST REPEAT 100 (IF NEAR 4 < 15 & ABS (HEADING 4 BUU<�ñ- 180) > 90 (SEND 6 1 SEND 4 1)) VANISHENDTO SCOREKEEP :SCORE HT SX 200 SY 180 WHILE 1 (PRINT CHAR(32)#CHAR(32) PRINT :SCORE WHILE MAIL 5=0 () MAKE "SCORE :SCORE + 1 COLORSET 1 COLORSET 0)ENDXUU<ÿ�ÿUU

UU<�ÿTO ABSOLUTEVALUE :NUMBER IF :NUMBER < 0 (MAKE "NUMBER :NUMBER * -1) OUTPUT :NUMBERENDTO EXP :NUMBER :POWER :X MAKE "X :NUMBER REPEAT :POWER - 1 (MAKE "NUMBER :NUMBER * :X) OUTPUT :NUMBERENDTO ROOT :N :G IF :N < 0 (PR;UU<�ìINT jNEGATIVEk STOP) MAKE "G :N/2 WHILE ABS(:G*:G-:N)>1+:N/10 (MAKE "G (:G + :N/:G) * 0.5) OUTPUT :GENDTO PHONEBOOK MAKE "DENNIS "555-3958 MAKE "JOE "555-9935 MAKE "CHRIS "555-9965 MAKE "ELAINE "555-7563ENDjUU<ÿ�ÿUU

UU<�ÿTO QUES PRINT jCOWS CAN FLYk PRINT jTYPE T FOR TRUEk PRINT jTYPE F FOR FALSEk IF RC = "F (PRINT "RIGHT) ELSE (PRINT "WRONG)ENDTO QUES1 FT PRINT jCOWS CAN FLYk PRINT jTYPE T FOR TRUEk PRINT jTYPE F FOR FALSEk IF RC = KUU<�ÿ"F (PRINT SE "F "RIGHT) ELSE (PRINT SE "T "WRONG)ENDTO QUES2 :ANSWER FT PRINT jCOWS CAN FLYk PRINT jTYPE T FOR TRUEk PRINT jTYPE F FOR FALSEk MAKE "ANSWER RC PRINT :ANSWER IF :ANSWER = "F (PRINT "RIGHT) IF :ANSWER = "T (ÝUU<�ÿPRINT "WRONG)ENDTO QUES3 FT PRINT jCOWS CAN FLYk PRINT jTYPE T FOR TRUEk PRINT jTYPE F FOR FALSEk TEST RC = "F IFTRUE (PRINT SE "F "RIGHT) IFFALSE (PRINT SE "T "WRONG)ENDTO ADD :SUM FT PRINT j2 + 3 = k MAKE "SUM RC PRINT :SUM I�UU<�ÿF :SUM = 5 (PRINT "CORRECT) ELSE (PRINT jNOT CORRECTk)ENDTO DRILL :ANSWER :GUESS FT REPEAT 5 (PICK MAKE "ANSWER RESULT MAKE "GUESS RC PRINT SE CHAR 32 :GUESS IF :GUESS = :ANSWER (PRINT "GOOD) ELSE mUU<�ÿ(PRINT jNO RIGHTk))ENDTO PICK :A1 :A2 MAKE "A1 RANDOM 5 MAKE "A2 RANDOM 6 PRINT CHAR 32#CHAR (48 + :A1) PRINT LPUT CHAR (48 + :A2) j+k OUTPUT :A1 + :A2ENDTO GREET :NAME FT PRINT jWHAT IS YOUR NAME?k MAKE "NAME RL PRI�UU<�£NT SE jWELCOME,k :NAMEENDTO GREET2 :NAME FT PRINT jWHAT IS YOUR NAME?k MAKE "NAME WORD FIRST RL ", PRINT SE SE jWELL,k :NAME jGLAD TO MEET YOU.kENDÉUU<ÿ�ÿUU

UU<�ÿTO PICK1 :N :L IF :N = 1 (OUTPUT FIRST :L) PICK1 (:N-1) (BF :L) OUTPUT RESULTENDTO PICK :N :L REPEAT :N - 1 (MAKE "L BF :L) OUTPUT FIRST :LENDTO PICKOUT :N :L FT MAKE "L RL MAKE "N FIRST RL PICK :N :L PRINT RESULTENDªUU<�ÿTO LENGTH :LIST :COUNT MAKE "COUNT 0 WHILE :LIST <> jk (MAKE "COUNT :COUNT + 1 MAKE "LIST BL :LIST) OUTPUT :COUNTENDTO PICKRANDOM :L :X LENGTH :L PICK (1 + RANDOM RESULT) :L OUTPUT RESULTENDTO MEMBER :WORD :LIST WHILE :LIþUU<�ÿST <> jk (IF :WORD = FIRST :LIST (OUTPUT "TRUE) MAKE "LIST BF :LIST) OUTPUT "FALSEENDTO PIG :W MEMBER (FIRST :W) jA E I O Uk IF RESULT (OUTPUT WORD :W "AY) PIG (WORD BF :W FIRST :W) OUTPUT RESULTENDTO METAMORPHIZE :YUU<�ÿS :H IF :S = jk (OUTPUT jk) PIG FIRST :S MAKE "H RESULT METAMORPHIZE (BF :S) OUTPUT SE :H RESULTENDTO MADLIB :N FT MAKE "NOUNS jSLUGS EELS RATSk MAKE "NOUNS :NOUNS# jELVES MOMSk MAKE "VERBS jCRAWL SWIM BITEk MAKE "VERBS KUU<�„:VERBS#jDIVE LOVEk PICKRANDOM :NOUNS MAKE :N RESULT PICKRANDOM :VERBS PRINT SE :N RESULT REPEAT 2500 () FT MADLIBENDiUU<ÿ�ÿUU

UU<�ÿTO NTOWORD :NUM :W :W1 IF :NUM = 0 (OUTPUT "0) MAKE "W " WHILE :NUM > 0 (MAKE "W1 :NUM MAKE "NUM INT(:NUM/10) MAKE "W WORD CHAR (:W1-:NUM*10+48) :W) OUTPUT :WENDTO FIBONACCI :L :T :N FT PRINT :L REPEAT :T (MAKE "N LŸUU<�ÿAST :L + LAST BL :L NTOWORD :N MAKE "L SE :L RESULT PRINT :L)TO INSERT :LIST :WORD :P :J MAKE "J jk REPEAT :P - 1 (MAKE "J SE :J FIRST :LIST MAKE "LIST BF :LIST) OUTPUT SE SE :J :WORD :LISTENDTO ALPHA :LIST :NEW :W :PíUU<�ÿ FT MAKE "NEW SE jk FIRST :LIST MAKE "LIST BF :LIST WHILE :LIST <> jk (MAKE "W FIRST :LIST COMPARE :W :NEW INSERT :NEW :W RESULT MAKE "NEW RESULT MAKE "LIST BF :LIST) PRINT :NEWENDTO COMPARE :WORD :NEW :W1 :N MAKE "N�UU<�ÿ 1 WHILE :NEW <> jk (MAKE "W1 FIRST :NEW COMPWORD :WORD :W1 IF RESULT (MAKE "N :N+1 MAKE "NEW BF :NEW) ELSE (OUTPUT :N)) OUTPUT :NENDTO COMPWORD :W1 :W2 IF :W1 = :W2 (OUTPUT "TRUE) WHILE FIRST :¯UU<�•W1 = FIRST :W2 (MAKE "W1 BF :W1 MAKE "W2 BF :W2) IF ASCII FIRST :W1 < ASCII FIRST :W2 (OUTPUT "FALSE) OUTPUT "TRUEENDjUU<ÿ�ÿUU

UU<�ÿTO ROTATE :N :L REPEAT :N-1 (MAKE "L SE BF :L FIRST :L) OUTPUT :LENDTO SHUFFLE :N :L :I :J PRINT "SHUFFLING MAKE "J jk REPEAT :N (ROTATE (1 + RANDOM :N-:I) :L MAKE "L RESULT MAKE "J SE :J FIRST :L MAKE "L BF :L MA�UU<�ÿKE "I :I+1) OUTPUT :JENDTO DECK :L :J MAKE "L jA K Q J 10 9 8 7 6k MAKE "L SE :L j5 4 3 2k MAKE "L SE SE SE :L :L :L :L SHUFFLE 52 :L 0 jk OUTPUT RESULTENDTO WAR :L :J :C1 :C2 :OVER FT DECK MAKE "L RESULT MAKE "J jk REPEAT 26 (�UU<�ÿ MAKE "J SE :J LAST :L MAKE "L BL :L) HATCH 1 PLAYER :L 26 HATCH 2 PLAYER :J 26 HATCH 3 ENDER 0 WHILE :OVER = 0 (WHILE :C1 = 0 (MAKE "C1 MAIL 1) WHILE :C2 = 0 (MAKE "C2 MAIL 2) NUMBERTOCARD :C1 PRvUU<�ÿINT RESULT; PRINT CHAR 32; NUMBERTOCARD :C2 PRINT RESULT MAKE "J RC IF :C1 >= :C2 (SEND 1 :C2 SEND 2 15) IF :C2 > :C1 (SEND 1 15 SEND 2 :C1) MAKE :C1 0 MAKE :C2 0 MAKE "OVER MAIL 3)ENDTO PL4UU<�ÿAYER :L :COUNT :N :T :ME NTOWORD ME MAKE "ME RESULT WHILE :L <> jk (NTOWORD :COUNT PRINT SE SE :ME "HAS RESULT MAKE "N FIRST :L CARDTONUMBER :N 0 SEND 0 RESULT MAKE "T 0 WHILE :T = 0 (MAKE "T MAIL 0) IF :T 4UU<�ÿ= 15 (MAKE "L BF :L MAKE "COUNT :COUNT-1) ELSE (MAKE "COUNT :COUNT+1 NUMBERTOCARD :T MAKE "L SE SE BF :L FIRST :L RESULT)) SEND 3 MEENDTO ENDER :OVER WHILE :OVER = 0 (MAKE "OVER MAIL 255 ·UU<�ÿ) NTOWORD :OVER PRINT SE SE "PLAYER RESULT "LOST SEND 0 :OVERENDTO CARDTONUMBER :CARD :N MAKE "N :CARD IF :CARD = "A (MAKE "N 14) IF :CARD = "K (MAKE "N 13) IF :CARD = "Q (MAKE "N 12) IF :CARD = "J (MAKE "N 11) OUTPUT :NENDTOåUU<�ÿ NUMBERTOCARD :N :CARD IF :N < 11 (NTOWORD :N MAKE "CARD RESULT) IF :N=14 (MAKE "CARD "A) IF :N=13 (MAKE "CARD "K) IF :N=12 (MAKE "CARD "Q) IF :N=11 (MAKE "CARD "J) OUTPUT :CARDENDTO NTOWORD :NUM :W :W1 IF :NUM = 0 (OUTPUT "0)ÛUU<�ÿ MAKE "W " WHILE :NUM > 0 (MAKE "W1 :NUM MAKE "NUM INT(:NUM/10) MAKE "W WORD CHAR (:W1-:NUM*10+48) :W) OUTPUT :WENDTO BJACK :L :DEAL :PLAY :D :P :C FT DECK MAKE "L RESULT WHILE :L <> jk (MAKE "DEAL FIRST :L MAKE "�UU<�ÿL BF :L MAKE "PLAY FIRST :L MAKE "L BF :L MAKE "DEAL SE :DEAL FIRST :L MAKE "L BF :L PRINT jDEALER SHOWS -k; PRINT BF :DEAL MAKE "PLAY SE :PLAY FIRST :L MAKE "L BF :L PRINT jYOU HAVE -k; PRINT :PLAY CHECK :DEAL ùUU<�ÿMAKE "D RESULT CHECK :PLAY MAKE "P RESULT IF :D = 21 (PRINT jDEALER WINSk) ELSE (IF :P = 21 (PRINT jYOU WINk) ELSE (MAKE "C "Y WHILE :P<22 & :C = "Y (PRINT "CARD? üUU<�ÿMAKE "C RC IF :C = "Y (MAKE "PLAY SE :PLAY FIRST :L MAKE "L BF :L PRINT :PLAY CHECK :PLAY MAKE "P RESULT)) IF :P > 21 (PRINT jDEALER kUU<�ÿWINSk) ELSE (WHILE :D < 17 (MAKE "DEAL SE :DEAL FIRST :L MAKE "L BF :L PRINT SE "DEALER :DEAL CHECK :DEAL MAKE :D RESULT) AUU<�ÿ) IF :D > :P & :D < 22 (PRINT jDEALER WINSk) ELSE (PRINT jYOU WINk))) PRINT jNEXT HANDk)ENDTO CHECK :HAND :N :CARD :T :S WHILE :HAND <> jk (MAKE "CARD FIRST :HAND M�UU<�ÿAKE "HAND BF :HAND CARDTONUMBER :CARD 0 MAKE "T RESULT IF :T = 13 (MAKE "T 10) IF :T = 12 (MAKE "T 10) IF :T = 11 (MAKE "T 10) IF :T = 14 (MAKE "T 11 MAKE "S 1) MAKE "N :N+:T) IF :N > 21 & :S = 1 (M*UU<�#AKE "N :N - 10) OUTPUT :NENDHUU<ÿ�ÿUU

UU<�ÿTO SW :W :P1 :P2 :L :J1 :J2 :T MAKE "J1 " MAKE "J2 " MAKE "L 1 REPEAT :P2 - 1 (IF :L < :P1 (MAKE "J1 WORD :J1 FIRST :W) IF :L = :P1 (MAKE "T FIRST :W) IF :L > :P1 (MAKE "J2 WORD :J2 FIRST :W) MAKDUU<�ÿE "W BF :W MAKE "L :L+1) MAKE "J1 WORD WORD WORD WORD :J1 FIRST :W :J2 :T BF :W OUTPUT :J1ENDTO PERM2 :WORD PRINT :WORD SW :WORD 1 2 PRINT RESULTENDTO PERM3 :WORD :NEW :N MAKE "NEW :WORD MAKE "N 3 REPEAT 3 (IF :N < 3 (ªUU<�ÿ SW :NEW :N 3 MAKE "NEW RESULT) PERM2 :NEW MAKE "NEW :WORD MAKE "N :N-1)ENDTO PERM4 :WORD :NEW :N MAKE "NEW :WORD MAKE "N 4 REPEAT 4 (IF :N < 4 (SW :NEW :N 4 MAKE "NEW RESULT) PERM3 :NEW EUU<�ÿ MAKE "NEW :WORD MAKE "N :N-1)ENDTO PERM :WORD :X :NEW :N MAKE "NEW :WORD MAKE "N :X REPEAT :X (IF :N < :X (SW :NEW :N :X MAKE "NEW RESULT) IF :X = 3 (PERM2 :NEW) ELSE (PERM :NEW (:X-1) ÁUU<�ÿ) MAKE "NEW :WORD MAKE "N :N-1)ENDTO START :WORD :N :NEW FT SIZE :WORD MAKE "N RESULT PERM :WORD :N :NEWENDTO SIZE :WORD :COUNT WHILE :WORD <> " (MAKE "COUNT :COUNT+1 MAKE "WORD BL :WORD) OUTPUT :COUNTENDTO FINDWúUU<�ÿORD :WORD :N :NEW FT MAKE "FINAL jk SIZE :WORD MAKE "N RESULT PERM :WORD :N :NEW PRINT :FINALENDTO PERM2B :WORD :SAVE PRINT :WORD MAKE "SAVE RC IF :SAVE = "Y (MAKE "FINAL SE :FINAL :WORD) SW :WORD 1 2 MAKE :WORD RESULT PRINT :ýUU<�OWORD MAKE "SAVE RC IF :SAVE = "Y (MAKE "FINAL SE :FINAL :WORD)END’UU<ÿ�ÿUU

UU<�ÿTO DICETHROW :SET :REDO FT MAKE "SET jk REPEAT 5 (THROW MAKE "SET SE :SET RESULT) REPEAT 2 (PRINT :SET PRINT jLIST DISCARDSk MAKE "REDO RL IF :REDO <> jk (DIFFERENCE :REDO :SET MAKE "SET RESULT LENGTH ËUU<�ÿ:SET MAKE "N 5-RESULT REPEAT :N (THROW MAKE "SET SE :SET RESULT))) PRINT SE jFINAL HANDk :SETENDTO HIDEWORD FT HATCH 1 DICE jN I D U T Kk HATCH 2 DICE jR A C L T Ek HATCH 3 DICE jM D R A N Tk HATC9UU<�ÿH 4 DICE jN A G O S Vk HATCH 5 DICE jO C A S E Uk HATCH 6 DICE jE M R D A Ck HATCH 7 DICE jD I N S T Wk HATCH 8 DICE jB T L Y O Ek HATCH 9 DICE jL G W P U Ok HATCH 10 DICE jA H U F I Ek HATCH 11 DICE jB I K O F Rk HATCH 12 DICE jD V N Z E âUU<�ÿAk HATCH 13 DICE jJ E B I R Mk HATCH 14 DICE jO P A N T Hk HATCH 15 DICE jY E G U K Lk HATCH 16 DICE jL U P A T Sk REPEAT 2000 () REPEAT 4 (PRINT jk REPEAT 4 (PRINT CHAR (MAIL 255); PRINT CHAR (32);))ENDTO DICE½UU<�ÿ :L :A :N MAKE "A jk REPEAT 6 (NTOWORD ASCII FIRST :L MAKE "A SE :A RESULT MAKE "L BF :L) REPEAT RANDOM 50 () PICKRANDOM :A 6 SEND 0 RESULTENDTO THROW :N :CHOICE MAKE "CHOICE j1 2 3 4 5 6k PICKRANDOM :CHOICE 6 OUTPUT RESULÇUU<�ÿTENDTO PICKRANDOM :L :X LENGTH :L PICK (1+RANDOM RESULT) :L OUTPUT RESULTENDTO LENGTH :LIST :COUNT MAKE "COUNT 0 WHILE :LIST <> jk (MAKE "COUNT :COUNT + 1 MAKE "LIST BL :LIST) OUTPUT :COUNTENDTO PICK :N :L REPEAT :N-1 (;UU<�ÿ MAKE "L BF :L) OUTPUT FIRST :LENDTO DIFFERENCE :OUT :LONG WHILE :OUT <> jk (REMOVE (FIRST :OUT) :LONG MAKE "OUT BF :OUT MAKE "LONG RESULT) OUTPUT :LONGENDTO REMOVE :WORD :LIST :N LENGTH :LIST MAKE "N RESULT REPEAT :NÇUU<�ÿ (IF :WORD = FIRST :LIST (OUTPUT BF :LIST) ELSE (MAKE "LIST SE BF :LIST FIRST :LIST)) PRINT SE :WORD jNOT IN LISTk OUTPUT :LISTENDTO NTOWORD :NUM :W :W1 IF :NUM = 0 (OUTPUT "0) MAKE "W " WHILE :NUM > >UU<�s0 (MAKE "W1 :NUM MAKE "NUM INT(:NUM/10) MAKE "W WORD CHAR (:W1-:NUM*10+48) :W) OUTPUT :WENDœUU<ÿ�ÿUU

UU<�ÿTO BOND WHILE 1 (COLORSET 1 CLEAR HT DELAY 1000 TUNNEL WALK PAINT)ENDTO WALK SX 28 MAN2 ST DELAY 2000 REPEAT 29 (MAN2 DELAY 100 HT SX XLOC ME+3 MAN1 ST DELAY 100) MAN2 DELAY 800 SX XLOC ME-8 DELAY 500ÉUU<�ÿ SX XLOC ME+16 DELAY 500 SX XLOC ME-16 DELAY 500 SX XLOC ME+8 REPEAT 3 (HT DELAY 20 ST DELAY 30)ENDTO TUNNEL PC 1 HT SX 60 SH 0 REPEAT 18 (FD 20 RT 124 FD 56 BK 56 LT 104)ENDTO MAN1 SHAPE RRUFFFLLDFLFR-FFLFFRRRF�UU<�ÿLLFFRRF-LFLLLFFRRFLFRRFL-FFLFLFLFLFFLFRFF-FFLLFRRRFLFFRFL-FFRRFFENDTO MAN2 SHAPE RRUFFFLLDFF-FFLFFRRRFLLFFRRF-LFLLLFFRRFLFRRFL-FFLFLFLFLFFLFRFF-FFLLFRRRFLFFFFFFENDTO PAINT PC 2 HT MAKE :X 1 REPEAT 3 (COLORSET 0 DELAY 100 CvUU<�ÿOLORSET 1 DELAY 100) SX 114 SY 102 SH 0 REPEAT 13 (RAGGED :X SX XLOC ME-6 SY YLOC ME-2 MAKE :X :X+5)ENDTO RAGGED :X REPEAT 8 (FD :X RT 135 FD 8 BK 8 LT 90)ENDTO DELAY :TIME REPEAT :TIME ()ENDTO CLO¦UU<�ÿCK :DELAY :INT CLEAR DRAW CLOCKFACE TIME :DELAY :INTENDTO CLOCKFACE MAKE "NUMBER 12 SY 180 SX 104 SH 90 REPEAT 12 (FD 22 RT 90 FD 5 BK 5 PU BK 10 PRINT :NUMBER FD 10 PD LT 90 FD 22 RT 30 MAKE "NUMBER :NUMBER+1 IF :N�UU<�ÿUMBER > 12 (MAKE "NUMBER 1))ENDTO TIME :DELAY :INTERVAL HT REPEAT 24 (MAKE :HR 0 WHILE :HR < 12 (MAKE :MIN 0 WHILE :MIN < 60 (DIGITAL :HR :MIN PC 1 LITTLEHAND :HR :MIN PC 2 BIGHAND :MIN>UU<�ÿ REPEAT :DELAY () PC 3 LITTLEHAND :HR :MIN BIGHAND :MIN MAKE "MIN :MIN+:INTERVAL) MAKE :HR :HR+1))ENDTO BIGHAND :MINUTE SX 128 SY 96 SH 6*:MINUTE LT 8 FD 60 RT 30 FD 18 RT 130 FD 18 RT 32 FD 60�UU<�ÿENDTO LITTLEHAND :HOUR :MINUTE SX 128 SY 96 SH 30*:HOUR + :MINUTE/2 LT 32 FD 30 RT 60 FD 30 RT 120 FD 30 RT 60 FD 30ENDTO DIGITAL :HOUR :MINUTES SX 0 SY 180 PRINT CHAR 32; PRINT CHAR 32; PRINT CHAR 32; SX 8*(:HOUR<=9 & :HOUR<>0) IF :H�UU<��OUR (PRINT :HOUR) ELSE (PRINT 12) SX 16 PRINT ": SX 24 IF :MINUTES < 10 (PRINT "0 SX 32) PRINT :MINUTESENDúUU<ÿ�ÿUU

UU<�ÿTO DELAY :TIME REPEAT :TIME ()ENDTO CLOCK :DELAY :INT CLEAR DRAW CLOCKFACE TIME :DELAY :INTENDTO CLOCKFACE MAKE "NUMBER 12 SY 180 SX 104 SH 90 REPEAT 12 (FD 22 RT 90 FD 5 BK 5 PU BK 10 PRINT :NUMBER FD 10 PD LT 90 FD 22 �UU<�ÿ RT 30 MAKE "NUMBER :NUMBER+1 IF :NUMBER > 12 (MAKE "NUMBER 1))ENDTO TIME :DELAY :INTERVAL HT REPEAT 24 (MAKE "HR 0 WHILE :HR < 12 (MAKE "MIN 0 WHILE :MIN < 60 (DIGITAL :HR :MIN PC 1 LI UU<�ÿTTLEHAND :HR :MIN PC 2 BIGHAND :MIN REPEAT :DELAY () PC 3 LITTLEHAND :HR :MIN BIGHAND :MIN MAKE "MIN :MIN+:INTERVAL) MAKE "HR :HR+1))ENDTO BIGHAND :MINUTE SX 128 SY 96 SH 6*:MINUTE LT 8 F�UU<�ÿD 60 RT 30 FD 18 RT 130 FD 18 RT 32 FD 60ENDTO LITTLEHAND :HOUR :MINUTE SX 128 SY 96 SH 30*:HOUR + :MINUTE/2 LT 32 FD 30 RT 60 FD 30 RT 120 FD 30 RT 60 FD 30ENDTO DIGITAL :HOUR :MINUTES SX 0 SY 180 PRINT CHAR 32; PRINT CHAR 32; PRINT C�UU<�¹HAR 32; SX 8*(:HOUR<=9 & :HOUR<>0) IF :HOUR (PRINT :HOUR) ELSE (PRINT 12) SX 16 PRINT ": SX 24 IF :MINUTES < 10 (PRINT "0 SX 32) PRINT :MINUTESEND¼UU<ÿ�ÿUU

UU<�ÊTO SPIDER :X COLORSET 1 BG 0 REPEAT 36 (HATCH 1 OFFSET :X :C MAKE "C :C+1 RT 10) VANISHENDTO OFFSET :LENGTH :COLOR PC :COLOR FD :LENGTH LT 30 FD :LENGTH RT 30 FD :LENGTHENDßUU<ÿ�ÿUU

UU<�ÿTO SPACETRAVEL DRAW COLORSET 1 BG 0 HT MAKE "X 4 WHILE 1 (HATCH 1 STAR1 RT 67 HATCH 1 STAR2 RT 207 HATCH 1 STAR1 RT 114 HATCH 1 STAR2 RT 87 SETX XLOC ME+:X IF NEAR 255 > 30 (MAKE "X :X*-1 HATCH\UU<�ÿ 1 PLANET)) VANISHENDTO STAR1 HT SHAPE FFRRFRRF PU FD 2 ST REPEAT 25 (FD 3)ENDTO STAR2 HT SHAPE F PU FD 2 ST REPEAT 35 (FD 3)ENDTO PLANET HT IF XLOC ME > 128 (SETH 75) ELSE (SETH 300) FD 10 SHAP$UU<�@E FFRFFRFFRFFRFFR-FFRFFRFF PU FD 6 ST REPEAT 20 (FD 4)END�UU<ÿ�ÿUU

UU<�ÿTO ORBIT COLORSET 1 BG 0 FD 10 RT 90 PC 3 REPEAT 8 (FD 6 RT 45 FD 6) HOME PU SETH 90 SY 164 MAKE "MOONPOS 0 SHAPE U-FFFFFRRDFFRFFFFRFFFFRFFFF-RFFFFRFFFFRFFFFRFFFFRF WHILE 1 (REPEAT 4 (HATCH 1 MOON :MOONPOS REPEAT 6 () �UU<�² MAKE "MOONPOS :MOONPOS+20) FD 10 RT 9)ENDTO MOON :POS HT PU RT :MOONPOS FD 20 SHAPE UFFFFRRDFRFFRFFRFFR-FFRFFRFFRFFRF ST REPEAT 9 () VANISHEND¨UU<ÿ�ÿUU

UU<�ÿTO SAMPLE COLORSET 1 DRAW BG 0 NPOLY 8 12 3 SX 70 SY 72 N2POLY 8 48 12ENDTO NPOLY :N :S :C PC :C REPEAT :N (POLYGON :N :S RT 360/:N)ENDTO POLYGON :N :S REPEAT :N (FD :S RT 360/:N)ENDTO N2POLY :N :S1 :S2 :I HT PU MAKE "�UU<��I 1 WHILE :I <= :N (HATCH :I NPOLY :N :S2 (1+:I-INT(:I/2)*2) FD :S1 RT 360/:N MAKE "I :I+1) VANISHENDbUU<ÿ�ÿUU

